咨询与建议

限定检索结果

文献类型

  • 518 篇 期刊文献
  • 322 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 848 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 801 篇 工学
    • 719 篇 计算机科学与技术...
    • 267 篇 电气工程
    • 79 篇 软件工程
    • 76 篇 信息与通信工程
    • 49 篇 控制科学与工程
    • 15 篇 交通运输工程
    • 13 篇 仪器科学与技术
    • 11 篇 电子科学与技术(可...
    • 10 篇 安全科学与工程
    • 9 篇 网络空间安全
    • 8 篇 机械工程
    • 8 篇 测绘科学与技术
    • 7 篇 生物工程
    • 6 篇 材料科学与工程(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
  • 106 篇 理学
    • 42 篇 生物学
    • 36 篇 数学
    • 20 篇 物理学
    • 9 篇 化学
    • 8 篇 统计学(可授理学、...
    • 6 篇 地球物理学
    • 6 篇 系统科学
    • 4 篇 地理学
  • 84 篇 管理学
    • 69 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
  • 74 篇 医学
    • 49 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 10 篇 农学
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 文学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 848 篇 graph representa...
  • 178 篇 graph neural net...
  • 103 篇 graph neural net...
  • 68 篇 self-supervised ...
  • 60 篇 contrastive lear...
  • 57 篇 task analysis
  • 53 篇 representation l...
  • 50 篇 deep learning
  • 38 篇 node classificat...
  • 35 篇 graph contrastiv...
  • 33 篇 feature extracti...
  • 31 篇 training
  • 28 篇 graph convolutio...
  • 27 篇 link prediction
  • 24 篇 machine learning
  • 24 篇 graph embedding
  • 24 篇 unsupervised lea...
  • 23 篇 graph classifica...
  • 20 篇 computational mo...
  • 19 篇 network embeddin...

机构

  • 12 篇 univ chinese aca...
  • 12 篇 alibaba grp peop...
  • 11 篇 tianjin univ col...
  • 11 篇 cent south univ ...
  • 10 篇 univ chinese aca...
  • 9 篇 chinese acad sci...
  • 8 篇 tsinghua univ de...
  • 8 篇 fuzhou univ coll...
  • 8 篇 univ chinese aca...
  • 8 篇 tsinghua univ pe...
  • 8 篇 beihang univ sch...
  • 7 篇 chinese univ hon...
  • 7 篇 northwestern pol...
  • 7 篇 univ illinois de...
  • 7 篇 shanghai jiao to...
  • 6 篇 chinese acad sci...
  • 6 篇 xidian univ sch ...
  • 5 篇 peking univ peop...
  • 5 篇 wuhan univ sch c...
  • 5 篇 nanjing univ sta...

作者

  • 11 篇 yu philip s.
  • 9 篇 peng hao
  • 8 篇 wu jia
  • 8 篇 mateos gonzalo
  • 7 篇 li jianxin
  • 7 篇 pan shirui
  • 7 篇 wang xin
  • 7 篇 sun qingyun
  • 6 篇 wang lei
  • 6 篇 shen huawei
  • 6 篇 he dongxiao
  • 6 篇 larroca federico
  • 6 篇 cao feilong
  • 6 篇 tang jie
  • 6 篇 wang wei
  • 6 篇 fu xingcheng
  • 6 篇 wu lingfei
  • 6 篇 ye hailiang
  • 6 篇 xie cheng
  • 5 篇 dong yuxiao

语言

  • 837 篇 英文
  • 9 篇 其他
  • 5 篇 法文
  • 4 篇 德文
  • 4 篇 意大利文
  • 2 篇 中文
检索条件"主题词=Graph Representation Learning"
848 条 记 录,以下是91-100 订阅
排序:
Identifying pathological groups from MRI in prostate cancer using graph representation learning
收藏 引用
DISPLAYS 2024年 83卷
作者: Liu, Feng Zhao, Yuanshen Yan, Chongzhe Duan, Jingxian Tang, Lei Gao, Bo Wang, Rongpin Guizhou Univ Med Coll Guiyang 550025 Guizhou Peoples R China Guizhou Prov Peoples Hosp Dept Ultrasound Guiyang 550002 Guizhou Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Hlth Engn Shenzhen 518000 Peoples R China Guizhou Prov Peoples Hosp Dept Med Imaging Int Exemplary Cooperat Base Precis Imaging Diag & Guiyang 550002 Guizhou Peoples R China Guizhou Med Univ Affiliated Hosp Dept Radiol Guiyang 550004 Peoples R China
Multiparametric magnetic resonance imaging (mpMRI) plays a critical role in prostate cancer (PCa) diagnosis, aiding in clinical trial evaluation and personalized treatment planning. We propose a novel prediction appro... 详细信息
来源: 评论
GRLC: graph representation learning With Constraints
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2024年 第6期35卷 8609-8622页
作者: Peng, Liang Mo, Yujie Xu, Jie Shen, Jialie Shi, Xiaoshuang Li, Xiaoxiao Shen, Heng Tao Zhu, Xiaofeng Univ Elect Sci & Technol China Ctr Future Media Chengdu 611731 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Technol Chengdu 611731 Peoples R China City Univ London Dept Comp Sci London EC1V 0HB England Univ British Columbia Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada Guangxi Acad Sci Nanning 530007 Peoples R China
Contrastive learning has been successfully applied in unsupervised representation learning. However, the generalization ability of representation learning is limited by the fact that the loss of downstream tasks (e.g.... 详细信息
来源: 评论
API Usage Recommendation Via Multi-View Heterogeneous graph representation learning
收藏 引用
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2023年 第5期49卷 3289-3304页
作者: Chen, Yujia Gao, Cuiyun Ren, Xiaoxue Peng, Yun Xia, Xin Lyu, Michael R. R. Harbin Inst Technol Shenzhen 518055 Guangdong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Software Engn Applicat Technol Lab Huawei 518129 Peoples R China
Developers often need to decide which APIs to use for the functions being implemented. With the ever-growing number of APIs and libraries, it becomes increasingly difficult for developers to find appropriate APIs, ind... 详细信息
来源: 评论
graph representation learning and Its Applications: A Survey
收藏 引用
SENSORS 2023年 第8期23卷 4168页
作者: Hoang, Van Thuy Jeon, Hyeon-Ju You, Eun-Soon Yoon, Yoewon Jung, Sungyeop Lee, O-Joun Catholic Univ Korea Dept Artificial Intelligence 43 Jibong Ro Bucheon 14662 Gyeonggi South Korea Korea Inst Atmospher Predict Syst KIAPS Data Assimilat Grp 35 Boramae Ro 5 Gil Seoul 07071 South Korea Dongguk Univ Dept Social Welf 30 Pildong Ro 1 Gil Seoul 04620 South Korea Seoul Natl Univ Adv Inst Convergence Technol AICT Semicond Devices & Circuits Lab 145 Gwanggyo Ro Suwon 16229 Gyeonggi South Korea
graphs are data structures that effectively represent relational data in the real world. graph representation learning is a significant task since it could facilitate various downstream tasks, such as node classificat... 详细信息
来源: 评论
Hierarchical graph representation learning for the prediction of drug-target binding affinity
收藏 引用
INFORMATION SCIENCES 2022年 613卷 507-523页
作者: Chu, Zhaoyang Huang, Feng Fu, Haitao Quan, Yuan Zhou, Xionghui Liu, Shichao Zhang, Wen Huazhong Agr Univ Coll Informat Wuhan 430070 Peoples R China Huazhong Agr Univ Hubei Engn Technol Res Ctr Agr Big Data Agr Bioinformat Key Lab Hubei Prov Key Lab Smart Anim Farming TechnolMinist Agr Wuhan 430070 Peoples R China
Computationally predicting drug-target binding affinity (DTA) has attracted increasing attention due to its benefit for accelerating drug discovery. Currently, numerous deep learning-based prediction models have been ... 详细信息
来源: 评论
Using graph representation learning to Predict Salivary Cortisol Levels in Pancreatic Cancer Patients
收藏 引用
JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2021年 第4期5卷 401-419页
作者: Dong, Guimin Boukhechba, Mehdi Shaffer, Kelly M. Ritterband, Lee M. Gioeli, Daniel G. Reilley, Matthew J. Le, Tri M. Kunk, Paul R. Bauer, Todd W. Chow, Philip I. Univ Virginia Engn Syst & Environm 151 Engn Way Charlottesville VA 22901 USA Univ Virginia Sch Med 1215 Lee St Charlottesville VA 22903 USA
Cortisol is a glucocorticoid hormone that is critical to immune system functioning. Studies show that prolonged exposure to high levels of cortisol can lead to a range of physical health ailments including the progres... 详细信息
来源: 评论
SaaN 2L-GRL: Two-Level graph representation learning Empowered With Subgraph-as-a-Node
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第12期36卷 9205-9219页
作者: Park, Jeong-Ha Lim, Bo-Young Lee, Kisung Kwon, Hyuk-Yoon Seoul Natl Univ Sci & Technol Grad Sch Data Sci Seoul 01811 South Korea Louisiana State Univ Div Comp Sci & Engn Baton Rouge LA 70803 USA
In this study, we propose a novel graph representation learning (GRL) model, called Two-Level GRL with Subgraph-as-a-Node (SaaN 2L-GRL in short), that partitions input graphs into smaller subgraphs for effective and s... 详细信息
来源: 评论
CLEAR: Cluster-Enhanced Contrast for Self-Supervised graph representation learning
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2024年 第1期35卷 899-912页
作者: Luo, Xiao Ju, Wei Qu, Meng Gu, Yiyang Chen, Chong Deng, Minghua Hua, Xian-Sheng Zhang, Ming Peking Univ Sch Math Sci Beijing 100871 Peoples R China Peking Univ Sch Comp Sci Beijing 100871 Peoples R China Univ Montreal Mila Quebec AI Inst Montreal PQ H3T 1J4 Canada Alibaba Grp Discovery Adventure Momentum & Outlook DAMO Acad Hangzhou 311100 Peoples R China
This article studies self-supervised graph representation learning, which is critical to various tasks, such as protein property prediction. Existing methods typically aggregate representations of each individual node... 详细信息
来源: 评论
graph representation learning-Based Early Depression Detection Framework in Smart Home Environments
收藏 引用
SENSORS 2022年 第4期22卷 1545页
作者: Kim, Jongmo Sohn, Mye Sungkyunkwan Univ Dept Ind Engn Suwon 16419 South Korea
Although the diagnosis and treatment of depression is a medical field, ICTs and AI technologies are used widely to detect depression earlier in the elderly. These technologies are used to identify behavioral changes i... 详细信息
来源: 评论
ProcSAGE: an efficient host threat detection method based on graph representation learning
收藏 引用
CYBERSECURITY 2024年 第1期7卷 1-14页
作者: Xu, Boyuan Gong, Yiru Geng, Xiaoyu Li, Yun Dong, Cong Liu, Song Liu, Yuling Jiang, Bo Lu, Zhigang Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Zhongguancun Lab Beijing 100194 Peoples R China
Advanced Persistent Threats (APTs) achieves internal networks penetration through multiple methods, making it difficult to detect attack clues solely through boundary defense measures. To address this challenge, some ... 详细信息
来源: 评论