咨询与建议

限定检索结果

文献类型

  • 518 篇 期刊文献
  • 322 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 848 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 801 篇 工学
    • 719 篇 计算机科学与技术...
    • 267 篇 电气工程
    • 79 篇 软件工程
    • 76 篇 信息与通信工程
    • 49 篇 控制科学与工程
    • 15 篇 交通运输工程
    • 13 篇 仪器科学与技术
    • 11 篇 电子科学与技术(可...
    • 10 篇 安全科学与工程
    • 9 篇 网络空间安全
    • 8 篇 机械工程
    • 8 篇 测绘科学与技术
    • 7 篇 生物工程
    • 6 篇 材料科学与工程(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
  • 106 篇 理学
    • 42 篇 生物学
    • 36 篇 数学
    • 20 篇 物理学
    • 9 篇 化学
    • 8 篇 统计学(可授理学、...
    • 6 篇 地球物理学
    • 6 篇 系统科学
    • 4 篇 地理学
  • 84 篇 管理学
    • 69 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
  • 74 篇 医学
    • 49 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 10 篇 农学
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 文学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 848 篇 graph representa...
  • 178 篇 graph neural net...
  • 103 篇 graph neural net...
  • 68 篇 self-supervised ...
  • 60 篇 contrastive lear...
  • 57 篇 task analysis
  • 53 篇 representation l...
  • 50 篇 deep learning
  • 38 篇 node classificat...
  • 35 篇 graph contrastiv...
  • 33 篇 feature extracti...
  • 31 篇 training
  • 28 篇 graph convolutio...
  • 27 篇 link prediction
  • 24 篇 machine learning
  • 24 篇 graph embedding
  • 24 篇 unsupervised lea...
  • 23 篇 graph classifica...
  • 20 篇 computational mo...
  • 19 篇 network embeddin...

机构

  • 12 篇 univ chinese aca...
  • 12 篇 alibaba grp peop...
  • 11 篇 tianjin univ col...
  • 11 篇 cent south univ ...
  • 10 篇 univ chinese aca...
  • 9 篇 chinese acad sci...
  • 8 篇 tsinghua univ de...
  • 8 篇 fuzhou univ coll...
  • 8 篇 univ chinese aca...
  • 8 篇 tsinghua univ pe...
  • 8 篇 beihang univ sch...
  • 7 篇 chinese univ hon...
  • 7 篇 northwestern pol...
  • 7 篇 univ illinois de...
  • 7 篇 shanghai jiao to...
  • 6 篇 chinese acad sci...
  • 6 篇 xidian univ sch ...
  • 5 篇 peking univ peop...
  • 5 篇 wuhan univ sch c...
  • 5 篇 nanjing univ sta...

作者

  • 11 篇 yu philip s.
  • 9 篇 peng hao
  • 8 篇 wu jia
  • 8 篇 mateos gonzalo
  • 7 篇 li jianxin
  • 7 篇 pan shirui
  • 7 篇 wang xin
  • 7 篇 sun qingyun
  • 6 篇 wang lei
  • 6 篇 shen huawei
  • 6 篇 he dongxiao
  • 6 篇 larroca federico
  • 6 篇 cao feilong
  • 6 篇 tang jie
  • 6 篇 wang wei
  • 6 篇 fu xingcheng
  • 6 篇 wu lingfei
  • 6 篇 ye hailiang
  • 6 篇 xie cheng
  • 5 篇 dong yuxiao

语言

  • 837 篇 英文
  • 9 篇 其他
  • 5 篇 法文
  • 4 篇 德文
  • 4 篇 意大利文
  • 2 篇 中文
检索条件"主题词=Graph Representation Learning"
848 条 记 录,以下是21-30 订阅
排序:
Clustering Enhanced Multiplex graph Contrastive representation learning
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2025年 第1期36卷 1341-1355页
作者: Yuan, Ruiwen Tang, Yongqiang Wu, Yajing Zhang, Wensheng Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 101408 Peoples R China Chinese Acad Sci Inst Automat State Key Lab Multimodal Artificial Intelligence Beijing 100190 Peoples R China Guangzhou Univ Sch Comp Sci & Cyber Engn Guangzhou 510006 Peoples R China
Multiplex graph representation learning has attracted considerable attention due to its powerful capacity to depict multiple relation types between nodes. Previous methods generally learn representations of each relat... 详细信息
来源: 评论
GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data
收藏 引用
BMC BIOINFORMATICS 2025年 第1期26卷 1-19页
作者: Wang, Kai Li, Yulong Liu, Fei Luan, Xiaoli Wang, Xinglong Zhou, Jingwen Jiangnan Univ Sch Internet Things Engn Key Lab Adv Proc Control Light Ind Minist Educ Lihu Rd 1800 Wuxi 214122 Jiangsu Peoples R China Jiangnan Univ Sci Ctr Future Foods 1800 Lihu Rd Wuxi 214122 Jiangsu Peoples R China Jiangnan Univ Sch Biotechnol Key Lab Ind Biotechnol Minist Educ 1800 Lihu Rd Wuxi 214122 Jiangsu Peoples R China Jiangnan Univ Engn Res Ctr Minist Educ Food Synthet Biotechnol 1800 Lihu Rd Wuxi 214122 Jiangsu Peoples R China Jiangnan Univ Jiangsu Prov Engn Res Ctr Food Synthet Biotechnol 1800 Lihu Rd Wuxi 214122 Jiangsu Peoples R China
BackgroundA gene regulatory network (GRN) is a graph-level representation that describes the regulatory relationships between transcription factors and target genes in cells. The reconstruction of GRNs can help invest... 详细信息
来源: 评论
graph representation learning for Similarity Stocks Analysis
收藏 引用
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY 2022年 第11期94卷 1283-1292页
作者: Zhang, Boyao Yang, Chao Zhang, Haikuo Wang, Zongguo Sun, Jingqi Wang, Lihua Zhao, Yonghua Wang, Yangang Chinese Acad Sci Comp Network Informat Ctr Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Beijing Univ Aeronaut & Astronaut Coll Software Beijing Peoples R China China Internet Network Informat Ctr Beijing Peoples R China
Listed companies with similar or related fundamentals usually influence each other, and these influences are usually reflected in stock prices. For example, the momentum spillover effect in the behavioral finance theo... 详细信息
来源: 评论
graph representation learning Based on Cognitive Spreading Activations
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第12期36卷 8408-8420页
作者: Bai, Jie Zhao, Kang Li, Linjing Zeng, Daniel Li, Qiudan Yang, Fan Zu, Quannan Chinese Acad Sci Inst Automat State Key Lab Multimodal Artificial Intelligence S Beijing 100190 Peoples R China Univ Iowa Tippie Coll Business Iowa City IA 52242 USA Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100190 Peoples R China Tianjin Univ Coll Management & Econ Tianjin 300072 Peoples R China
graph representation learning is an emerging area for graph analysis and inference. However, existing approaches for large-scale graphs either sample nodes in sequential walks or manipulate the adjacency matrices of g... 详细信息
来源: 评论
graph representation learning Enhanced Semi-Supervised Feature Selection
收藏 引用
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 2024年 第9期18卷 1-20页
作者: Tan, Jun Qi, Zhifeng Gui, Ning Cent South Univ Sch Comp Sci & Engn Changsha Peoples R China Cent South Univ Sch Automat Changsha Peoples R China
Feature selection is a key step in machine learning by eliminating features that are not related to the modeling target to create reliable and interpretable models. By exploring the potential complex correlations amon... 详细信息
来源: 评论
graph representation learning With Adaptive Metric
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2023年 第4期10卷 2074-2085页
作者: Zhang, Chun-Yang Cai, Hai-Chun Chen, C. L. Philip Lin, Yue-Na Fang, Wu-Peng Fuzhou Univ Sch Comp & Data Sci Fuzhou 350025 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China
Contrastive learning has been widely used in graph representation learning, which extracts node or graph representations by contrasting positive and negative node pairs. It requires node representations (embeddings) t... 详细信息
来源: 评论
graph representation learning via simple jumping knowledge networks
收藏 引用
APPLIED INTELLIGENCE 2022年 第10期52卷 11324-11342页
作者: Yang, Fei Zhang, Huyin Tao, Shiming Hao, Sheng Wuhan Univ Sch Comp Sci Wuhan Peoples R China Minist Nat Resources Key Lab Urban Land Resources Monitoring & Simulat Shenzhen Peoples R China Cent China Normal Univ Sch Comp Sci Wuhan Peoples R China
Recent graph neural networks for graph representation learning depend on a neighborhood aggregation process. Several works focus on simplifying the neighborhood aggregation process and model structures. However, as th... 详细信息
来源: 评论
graph representation learning Beyond Node and Homophily
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2023年 第5期35卷 4880-4893页
作者: Li, You Lin, Bei Luo, Binli Gui, Ning Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China
Unsupervised graph representation learning aims to distill various graph information into a downstream task-agnostic dense vector embedding. However, existing graph representation learning approaches are designed main... 详细信息
来源: 评论
graph representation learning based on deep generative gaussian mixture models
收藏 引用
NEUROCOMPUTING 2023年 523卷 157-169页
作者: Niknam, Ghazaleh Molaei, Soheila Zare, Hadi Clifton, David Pan, Shirui Univ Tehran Fac New Sci & Technol Tehran Iran Univ Oxford Dept Engn Sci Oxford England Griffith Univ Sch Informat & Commun Technol Brisbane Australia Oxford Suzhou Ctr Adv Res OSCAR Suzhou Peoples R China
graph representation learning is an effective tool for facilitating graph analysis with machine learning methods. Most GNNs, including graph Convolutional Networks (GCN), graph Recurrent Neural Networks (GRNN), and Gr... 详细信息
来源: 评论
graph representation learning Based on Specific Subgraphs for Biomedical Interaction Prediction
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024年 第5期21卷 1552-1564页
作者: Pang, Huaxin Wei, Shikui Du, Zhuoran Zhao, Yufeng Cai, Shengxing Zhao, Yao Beijing Jiaotong Univ Sch Comp Informat Technol Beijing 100044 Peoples R China Beijing Key Lab Adv Informat Sci Network Technol Beijing 100044 Peoples R China China Acad Chinese Med Sci Natl Data Ctr Tradit Chinese Med Beijing 100010 Peoples R China
Discovering the novel associations of biomedical entities is of great significance and can facilitate not only the identification of network biomarkers of disease but also the search for putative drug targets. graph r... 详细信息
来源: 评论