咨询与建议

限定检索结果

文献类型

  • 518 篇 期刊文献
  • 317 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 843 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 797 篇 工学
    • 714 篇 计算机科学与技术...
    • 266 篇 电气工程
    • 79 篇 软件工程
    • 73 篇 信息与通信工程
    • 48 篇 控制科学与工程
    • 13 篇 仪器科学与技术
    • 13 篇 交通运输工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 8 篇 测绘科学与技术
    • 8 篇 安全科学与工程
    • 7 篇 生物工程
    • 7 篇 网络空间安全
    • 6 篇 材料科学与工程(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
  • 104 篇 理学
    • 42 篇 生物学
    • 34 篇 数学
    • 20 篇 物理学
    • 9 篇 化学
    • 6 篇 地球物理学
    • 6 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 4 篇 地理学
  • 82 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 19 篇 图书情报与档案管...
  • 80 篇 医学
    • 49 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 10 篇 农学
  • 6 篇 法学
    • 4 篇 社会学
  • 3 篇 文学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 843 篇 graph representa...
  • 177 篇 graph neural net...
  • 103 篇 graph neural net...
  • 67 篇 self-supervised ...
  • 60 篇 contrastive lear...
  • 57 篇 task analysis
  • 53 篇 representation l...
  • 50 篇 deep learning
  • 38 篇 node classificat...
  • 34 篇 graph contrastiv...
  • 33 篇 feature extracti...
  • 31 篇 training
  • 28 篇 graph convolutio...
  • 28 篇 link prediction
  • 24 篇 graph classifica...
  • 24 篇 machine learning
  • 24 篇 graph embedding
  • 24 篇 unsupervised lea...
  • 20 篇 computational mo...
  • 19 篇 network embeddin...

机构

  • 12 篇 univ chinese aca...
  • 12 篇 alibaba grp peop...
  • 11 篇 tianjin univ col...
  • 11 篇 cent south univ ...
  • 10 篇 univ chinese aca...
  • 9 篇 chinese acad sci...
  • 8 篇 tsinghua univ de...
  • 8 篇 fuzhou univ coll...
  • 8 篇 univ chinese aca...
  • 8 篇 tsinghua univ pe...
  • 8 篇 beihang univ sch...
  • 7 篇 chinese univ hon...
  • 7 篇 northwestern pol...
  • 7 篇 univ illinois de...
  • 7 篇 shanghai jiao to...
  • 6 篇 chinese acad sci...
  • 6 篇 xidian univ sch ...
  • 5 篇 peking univ peop...
  • 5 篇 wuhan univ sch c...
  • 5 篇 nanjing univ sta...

作者

  • 11 篇 yu philip s.
  • 9 篇 peng hao
  • 8 篇 wu jia
  • 8 篇 mateos gonzalo
  • 7 篇 li jianxin
  • 7 篇 pan shirui
  • 7 篇 wang xin
  • 7 篇 sun qingyun
  • 6 篇 wang lei
  • 6 篇 shen huawei
  • 6 篇 larroca federico
  • 6 篇 cao feilong
  • 6 篇 tang jie
  • 6 篇 wang wei
  • 6 篇 fu xingcheng
  • 6 篇 wu lingfei
  • 6 篇 ye hailiang
  • 6 篇 xie cheng
  • 5 篇 dong yuxiao
  • 5 篇 pei jian

语言

  • 836 篇 英文
  • 5 篇 法文
  • 5 篇 其他
  • 4 篇 德文
  • 4 篇 意大利文
  • 2 篇 中文
检索条件"主题词=Graph Representation Learning"
843 条 记 录,以下是31-40 订阅
排序:
graph representation learning via graphical Mutual Information Maximization  20
Graph Representation Learning via Graphical Mutual Informati...
收藏 引用
29th World Wide Web Conference (WWW)
作者: Peng, Zhen Huang, Wenbing Luo, Minnan Zheng, Qinghua Rong, Yu Xu, Tingyang Huang, Junzhou Xi An Jiao Tong Univ Sch Comp Sci & Technol Key Lab Intelligent Networks & Network Secur Minist Educ Xian Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing Natl Res Ctr Informat Sci & Technol BNRis State Key Lab Intelligent Technol & Syst Beijing Peoples R China Tencent AI Lab Shenzhen Peoples R China
The richness in the content of various information networks such as social networks and communication networks provides the unprecedented potential for learning high-quality expressive representations without external... 详细信息
来源: 评论
graph representation learning for Merchant Incentive Optimization in Mobile Payment Marketing  19
Graph Representation Learning for Merchant Incentive Optimiz...
收藏 引用
28th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Liu, Ziqi Wang, Dong Yu, Qianyu Zhang, Zhiqiang Shen, Yue Ma, Jian Zhong, Wenliang Gu, Jinjie Zhou, Jun Yang, Shuang Qi, Yuan Ant Financial Serv Grp Hangzhou Peoples R China
Mobile payment such as Alipay has been widely used in our daily lives. To further promote the mobile payment activities, it is important to run marketing campaigns under a limited budget by providing incentives such a... 详细信息
来源: 评论
graph representation learning of Banking Transaction Network with EdgeWeight-Enhanced Attention and Textual Information  22
Graph Representation Learning of Banking Transaction Network...
收藏 引用
31st ACM Web Conference (WWW)
作者: Minakawa, Naoto Izumi, Kiyoshi Sakaji, Hiroki Sano, Hitomi Univ Tokyo Tokyo Japan
In this paper, we propose a novel approach to capture inter-company relationships from banking transaction data using graph neural networks with a special attention mechanism and textual industry or sector information... 详细信息
来源: 评论
graph representation learning for Context-Aware Network Intrusion Detection  5
Graph Representation Learning for Context-Aware Network Intr...
收藏 引用
Conference on Artificial Intelligence and Machine learning for Multi-Domain Operations Applications V
作者: Premkumar, Augustine Schneider, Madeleine Spivey, Carlton Pavlik, John A. Bastian, Nathaniel D. US Mil Acad Mathemat Sci Dept West Point NY 10996 USA US Mil Acad Army Cyber Inst West Point NY 10996 USA
Detecting malicious activity using a network intrusion detection system (NIDS) is an ongoing battle for the cyber defender. Increasingly, cyber-attacks are sophisticated and occur rapidly, necessitating the use of mac... 详细信息
来源: 评论
graph representation learning via Adversarial Variational Bayes  21
Graph Representation Learning via Adversarial Variational Ba...
收藏 引用
30th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Li, Yunhe Hu, Yaochen Zhang, Yingxue Univ Montreal Montreal PQ Canada Huawei Noahs Ark Lab Montreal PQ Canada
Methods that learn representations of nodes in a graph play an important role in network analysis. Most of the existing methods of graph representation learning have focused on embedding each node in a graph as a sing... 详细信息
来源: 评论
graph representation learning for Multi-Task Settings: a Meta-learning Approach
Graph Representation Learning for Multi-Task Settings: a Met...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Buffelli, Davide Vandin, Fabio Univ Padua Dept Informat Engn Padua Italy
graph Neural Networks (GNNs) have become the state-of-the-art method for many applications on graph structured data. GNNs are a model for graph representation learning, which aims at learning to generate low dimension... 详细信息
来源: 评论
graph representation learning, Deep Generative Models on graphs, Group Equivariant Molecular Neural Networks and Multiresolution Machine learning
Graph Representation Learning, Deep Generative Models on Gra...
收藏 引用
作者: Hy, Truong Son The University of Chicago
学位级别:Ph.D., Doctor of Philosophy
graph neural networks (GNNs) utilizing various ways of generalizing the concept of convolution to graphs have been widely applied to many learning tasks, including modeling physical systems, finding molecular represen... 详细信息
来源: 评论
graph representation learning In A Contrastive Framework For Community Detection  26
Graph Representation Learning In A Contrastive Framework For...
收藏 引用
26th International Computer Conference of the Computer-Society-of-Iran
作者: Balouchi, Mehdi Ahmadi, Ali KN Toosi Univ Technol Fac Comp Engn Tehran Iran
graph structured data has become very popular and useful recently. Many areas in science and technology are using graphs for modeling the phenomena they are dealing with (e.g., computer science, computational economic... 详细信息
来源: 评论
graph representation learning: Foundations, Methods, Applications and Systems  21
Graph Representation Learning: Foundations, Methods, Applica...
收藏 引用
27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
作者: Jin, Wei Ma, Yao Wang, Yiqi Liu, Xiaorui Tang, Jiliang Cen, Yukuo Qiu, Jiezhong Tang, Jie Shi, Chuan Ye, Yanfang Zhang, Jiawei Yu, Philip S. Michigan State Univ Comp Sci & Engn E Lansing MI 48824 USA Michigan State Univ Comp Sci & Engn Dept E Lansing MI 48824 USA Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China Beijing Univ Posts & Telecommun Beijing Peoples R China Case Western Reserve Univ Cleveland OH 44106 USA Case Western Reserve Univ Dept Comp & Data Sci Cleveland OH 44106 USA Florida State Univ Tallahassee FL 32306 USA Florida State Univ Comp Sci Tallahassee FL 32306 USA Univ Illinois Chicago IL USA Univ Illinois Comp Sci Chicago IL USA
graphs such as social networks and molecular graphs are ubiquitous data structures in the real world. Due to their prevalence, it is of great research importance to extract meaningful patterns from graph structured da... 详细信息
来源: 评论
graph representation learning with graph Transformers in Neural Combinatorial Optimization  22
Graph Representation Learning with Graph Transformers in Neu...
收藏 引用
22nd IEEE International Conference on Machine learning and Applications, ICMLA 2023
作者: Wang, Tianze Payberah, Amir H. Vlassov, Vladimir Kth Royal Institute of Technology Department of Computer Science Stockholm Sweden
Neural combinatorial optimization aims to use neural networks to speed up the solving process of combinatorial optimization problems, i.e., finding the optimal solution of a problem instance from a finite set of feasi... 详细信息
来源: 评论