咨询与建议

限定检索结果

文献类型

  • 518 篇 期刊文献
  • 317 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 843 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 797 篇 工学
    • 714 篇 计算机科学与技术...
    • 266 篇 电气工程
    • 79 篇 软件工程
    • 73 篇 信息与通信工程
    • 48 篇 控制科学与工程
    • 13 篇 仪器科学与技术
    • 13 篇 交通运输工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 8 篇 测绘科学与技术
    • 8 篇 安全科学与工程
    • 7 篇 生物工程
    • 7 篇 网络空间安全
    • 6 篇 材料科学与工程(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
  • 104 篇 理学
    • 42 篇 生物学
    • 34 篇 数学
    • 20 篇 物理学
    • 9 篇 化学
    • 6 篇 地球物理学
    • 6 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 4 篇 地理学
  • 82 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 19 篇 图书情报与档案管...
  • 80 篇 医学
    • 49 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 10 篇 农学
  • 6 篇 法学
    • 4 篇 社会学
  • 3 篇 文学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 843 篇 graph representa...
  • 177 篇 graph neural net...
  • 103 篇 graph neural net...
  • 67 篇 self-supervised ...
  • 60 篇 contrastive lear...
  • 57 篇 task analysis
  • 53 篇 representation l...
  • 50 篇 deep learning
  • 38 篇 node classificat...
  • 34 篇 graph contrastiv...
  • 33 篇 feature extracti...
  • 31 篇 training
  • 28 篇 graph convolutio...
  • 28 篇 link prediction
  • 24 篇 graph classifica...
  • 24 篇 machine learning
  • 24 篇 graph embedding
  • 24 篇 unsupervised lea...
  • 20 篇 computational mo...
  • 19 篇 network embeddin...

机构

  • 12 篇 univ chinese aca...
  • 12 篇 alibaba grp peop...
  • 11 篇 tianjin univ col...
  • 11 篇 cent south univ ...
  • 10 篇 univ chinese aca...
  • 9 篇 chinese acad sci...
  • 8 篇 tsinghua univ de...
  • 8 篇 fuzhou univ coll...
  • 8 篇 univ chinese aca...
  • 8 篇 tsinghua univ pe...
  • 8 篇 beihang univ sch...
  • 7 篇 chinese univ hon...
  • 7 篇 northwestern pol...
  • 7 篇 univ illinois de...
  • 7 篇 shanghai jiao to...
  • 6 篇 chinese acad sci...
  • 6 篇 xidian univ sch ...
  • 5 篇 peking univ peop...
  • 5 篇 wuhan univ sch c...
  • 5 篇 nanjing univ sta...

作者

  • 11 篇 yu philip s.
  • 9 篇 peng hao
  • 8 篇 wu jia
  • 8 篇 mateos gonzalo
  • 7 篇 li jianxin
  • 7 篇 pan shirui
  • 7 篇 wang xin
  • 7 篇 sun qingyun
  • 6 篇 wang lei
  • 6 篇 shen huawei
  • 6 篇 larroca federico
  • 6 篇 cao feilong
  • 6 篇 tang jie
  • 6 篇 wang wei
  • 6 篇 fu xingcheng
  • 6 篇 wu lingfei
  • 6 篇 ye hailiang
  • 6 篇 xie cheng
  • 5 篇 dong yuxiao
  • 5 篇 pei jian

语言

  • 836 篇 英文
  • 5 篇 法文
  • 5 篇 其他
  • 4 篇 德文
  • 4 篇 意大利文
  • 2 篇 中文
检索条件"主题词=Graph Representation Learning"
843 条 记 录,以下是41-50 订阅
排序:
graph representation learning For Stroke Recurrence Prediction  48
Graph Representation Learning For Stroke Recurrence Predicti...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Glaze, Nicholas Bayer, Artun Jiang, Xiaoqian Savitz, Sean Segarra, Santiago Rice University Department of Electrical and Computer Engineering HoustonTX United States University of Texas Health Science Center School of Biomedical Informatics HoustonTX United States University of Texas Health Science Center Department of Neurology HoustonTX United States
Stroke is one of the leading causes of death worldwide, and its mortality rate is drastically higher for patients who suffer recurrent strokes. Motivated by the recent success of graph learning methods on medical task... 详细信息
来源: 评论
Knowledge structure enhanced graph representation learning model for attentive knowledge tracing
收藏 引用
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2022年 第3期37卷 2012-2045页
作者: Gan, Wenbin Sun, Yuan Sun, Yi Sokendai Natl Inst Informat Tokyo Japan Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing Peoples R China
Knowledge tracing (KT) is a fundamental personalized-tutoring technique for learners in online learning systems. Recent KT methods employ flexible deep neural network-based models that excel at this task. However, the... 详细信息
来源: 评论
Unsupervised graph representation learning Beyond Aggregated View
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第12期36卷 9504-9516页
作者: Zhou, Jian Li, Jiasheng Kuang, Li Gui, Ning Cent South Univ Sch Comp Sci & Engn Changsha 410083 Peoples R China
Unsupervised graph representation learning aims to condense graph information into dense vector embeddings to support various downstream tasks. To achieve this goal, existing UGRL approaches mainly adopt the message-p... 详细信息
来源: 评论
GRLC: graph representation learning With Constraints
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2024年 第6期35卷 8609-8622页
作者: Peng, Liang Mo, Yujie Xu, Jie Shen, Jialie Shi, Xiaoshuang Li, Xiaoxiao Shen, Heng Tao Zhu, Xiaofeng Univ Elect Sci & Technol China Ctr Future Media Chengdu 611731 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Technol Chengdu 611731 Peoples R China City Univ London Dept Comp Sci London EC1V 0HB England Univ British Columbia Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada Guangxi Acad Sci Nanning 530007 Peoples R China
Contrastive learning has been successfully applied in unsupervised representation learning. However, the generalization ability of representation learning is limited by the fact that the loss of downstream tasks (e.g.... 详细信息
来源: 评论
Propagation Enhanced Neural Message Passing for graph representation learning
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2023年 第2期35卷 1952-1964页
作者: Fan, Xiaolong Gong, Maoguo Wu, Yue Qin, A. K. Xie, Yu Xidian Univ Sch Elect Engn Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710126 Shaanxi Peoples R China Xidian Univ Sch Comp Sci & Technol Xian 710126 Shaanxi Peoples R China Swinburne Univ Technol Dept Comp Technol Melbourne Vic 3122 Australia Shanxi Univ Key Lab Computat Intelligence & Chinese Informat P Minist Educ Taiyuan 030006 Peoples R China
graph Neural Network (GNN) is capable of applying deep neural networks to graph domains. Recently, Message Passing Neural Networks (MPNNs) have been proposed to generalize several existing graph neural networks into a... 详细信息
来源: 评论
A Novel Method for Bitcoin Price Manipulation Identification Based on graph representation learning
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2024年 第5期11卷 5607-5618页
作者: Zhang, Yanmei Li, Ziyu Su, Yuwen Li, Jianjun Chen, Shiping Cent Univ Finance & Econ Engn Res Ctr State Financial Secur Beijing 102206 Peoples R China Cent Univ Finance & Econ Sch Informat Beijing 102206 Peoples R China Cent Univ Finance & Econ Sch Finance Beijing 102206 Peoples R China CSIRO Data61 Sydney NSW 1710 Australia
Bitcoin is a cryptocurrency designed based on the concept of "decentralization," and its price fluctuation is much larger than those of traditional financial assets, which has raised concerns about intention... 详细信息
来源: 评论
Towards effective urban region-of-interest demand modeling via graph representation learning
收藏 引用
DATA MINING AND KNOWLEDGE DISCOVERY 2024年 第6期38卷 3503-3530页
作者: Wang, Pu Sun, Jingya Chen, Wei Zhao, Lei Soochow Univ Sch Comp Sci & Technol 1 Shizhi St Suzhou 215006 Jiangsu Peoples R China Soochow Univ Appl Technol Coll 1 Daxue Rd Suzhou 215006 Jiangsu Peoples R China
Identifying the region's functionalities and what the specific Point-of-Interest (POI) needs is essential for effective urban planning. However, due to the diversified and ambiguity nature of urban regions, there ... 详细信息
来源: 评论
A Survey on Malware Detection with graph representation learning
收藏 引用
ACM COMPUTING SURVEYS 2024年 第11期56卷 1-36页
作者: Bilot, Tristan El Madhoun, Nour Al Agha, Khaldoun Zouaoui, Anis Iriguard Puteaux La Defense France Univ Paris Saclay CNRS Lab Interdisciplinaire Sci Numer Gif Sur Yvette France ISEP Inst Super Elect Paris LISITE Lab Issy Les Moulineaux France Sorbonne Univ CNRS LIP6 Paris France
Malware detection has become a major concern due to the increasing number and complexity of malware. Traditional detection methods based on signatures and heuristics are used for malware detection, but unfortunately, ... 详细信息
来源: 评论
A Survey on graph representation learning Methods
收藏 引用
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 2024年 第1期15卷 1-55页
作者: Khoshraftar, Shima An, Aijun York Univ Elect Engn & Comp Sci Dept Keele St Toronto ON Canada
graph representation learning has been a very active research area in recent years. The goal of graph representation learning is to generate graph representation vectors that capture the structure and features of larg... 详细信息
来源: 评论
graphPMU: Event Clustering via graph representation learning Using Locationally-Scarce Distribution-Level Fundamental and Harmonic PMU Measurements
收藏 引用
IEEE TRANSACTIONS ON SMART GRID 2023年 第4期14卷 2960-2972页
作者: Aligholian, Armin Mohsenian-Rad, Hamed Univ Calif Riverside Dept Elect & Comp Engn Riverside CA 92521 USA
This paper is concerned with the complex task of identifying the type and cause of the events that are captured by distribution-level phasor measurement units (D-PMUs) in order to enhance situational awareness in powe... 详细信息
来源: 评论