During the last decade, the availability of large amounts of social network information from various social and socio-technical networks has increased dramatically. These data sources are inherently dynamic with const...
详细信息
ISBN:
(纸本)9781728174457
During the last decade, the availability of large amounts of social network information from various social and socio-technical networks has increased dramatically. These data sources are inherently dynamic with constantly evolving relationships and connections between entities. Research in this area must address the challenge of analyzing these dynamic datasets under potentially strict time constraints. In addition, due to the sheer size of these networks, they tend to be stored and analyzed on distributed platforms. In our previous work, we designed methodologies which are anytime and anywhere to design scalable parallel/distributed algorithms that incorporate different forms of network changes. In this work, we will investigate various schemas to balance the incorporation of dynamic network changes that will substantially reduce idleness and load imbalances among processors. We will show theoretically that in most cases our buffer-based methodology performs better than the more common way of handling changes as they come in.
The availability of large volumes of social network data from a variety of social and socio-technical networks has greatly increased. These networks provide critical insights into understanding various domains includi...
详细信息
ISBN:
(纸本)9781665435772
The availability of large volumes of social network data from a variety of social and socio-technical networks has greatly increased. These networks provide critical insights into understanding various domains including business, healthcare, and disaster management. The relationships and interactions between different entities represented in most of these data sources are constantly evolving. graph processing and analysis methodologies that can effectively integrate data changes while minimizing recomputations are needed to handle these dynamic networks. In addition, the size of these information sources is constantly increasing, therefore we need designs that can perform analysis that are memory efficient in order to address resource constraints. In this paper, we show how our anytime anywhere framework can be used to construct memory-efficient closeness centrality algorithms. In particular, we will show how dynamic edge additions can be efficiently handled in the proposed scheme.
暂无评论