咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 102 篇 工学
    • 86 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 9 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 28 篇 理学
    • 19 篇 生物学
    • 8 篇 数学
    • 4 篇 地球物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 115 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 10 篇 deep learning
  • 10 篇 graph convolutio...
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 graph convolutio...
  • 4 篇 task analysis
  • 4 篇 anomaly detectio...
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 kernel
  • 4 篇 network embeddin...

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 111 篇 英文
检索条件"主题词=Graph autoencoder"
115 条 记 录,以下是11-20 订阅
排序:
A deep learning approach for polyline and building simplification based on graph autoencoder with flexible constraints
收藏 引用
CARTOgraphY AND GEOgraphIC INFORMATION SCIENCE 2024年 第1期51卷 79-96页
作者: Yan, Xiongfeng Yang, Min Tongji Univ Coll Surveying & Geoinformat Shanghai Peoples R China Wuhan Univ Sch Resource & Environm Sci Wuhan Peoples R China
Polyline and building simplification remain challenging in cartography. Most proposed algorithms are geometric-based and rely on specific rules. In this study, we propose a deep learning approach to simplify polylines... 详细信息
来源: 评论
CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder
收藏 引用
MATHEMATICAL BIOSCIENCES AND ENGINEERING 2023年 第5期20卷 7957-7980页
作者: Wang, Huiqing Han, Jiale Li, Haolin Duan, Liguo Liu, Zhihao Cheng, Hao Taiyuan Univ Technol Coll Informat & Comp Taiyuan 030024 Peoples R China
Circular RNAs (circRNAs) constitute a category of circular non-coding RNA molecules whose abnormal expression is closely associated with the development of diseases. As biological data become abundant, a lot of comput... 详细信息
来源: 评论
SIGA: social influence modeling integrating graph autoencoder for rating prediction
收藏 引用
APPLIED INTELLIGENCE 2023年 第6期53卷 6432-6447页
作者: Liu, Jinxin Xiao, Yingyuan Zheng, Wenguang Hsu, Ching-Hsien Tianjin Univ Technol Engn Res Ctr Learning Based Intelligent Syst Minist Educ Tianjin 300384 Peoples R China Tianjin Univ Technol Tianjin Key Lab Intelligence Comp & Novel Softwar Tianjin 300384 Peoples R China Asia Univ Coll Informat & Elect Engn Taichung 41354 Taiwan
With the revival of social networks, many studies try to integrate social relations of users to improve the accuracy of rating prediction. However, most existing methods cannot accurately reflect how social relations ... 详细信息
来源: 评论
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
收藏 引用
BMC BIOINFORMATICS 2023年 第1期24卷 1-17页
作者: Zhang, Yuanyuan Feng, Yinfei Wu, Mengjie Deng, Zengqian Wang, Shudong Yinfei Feng Qingdao Univ Technol Qingdao Peoples R China China Univ Petr Sch Comp Sci & Technol Qingdao Peoples R China
MotivationAccurate identification of Drug-Target Interactions (DTIs) plays a crucial role in many stages of drug development and drug repurposing. (i) Traditional methods do not consider the use of multi-source data a... 详细信息
来源: 评论
Robustness meets accuracy in adversarial training for graph autoencoder
收藏 引用
NEURAL NETWORKS 2023年 157卷 114-124页
作者: Zhou, Xianchen Hu, Kun Wang, Hongxia Natl Univ Def Technol Coll Liberal Arts & Sci Changsha 410072 Hunan Peoples R China Natl Univ Def Technol Coll Comp Sci & Technol Changsha 410072 Hunan Peoples R China
graph autoencoder (GAE) is an effective deep method for graph embedding, while it is vulnerable to the graph adversarial attacks. Adversarial training, which generates adversarial examples in the adversarial scope(nei... 详细信息
来源: 评论
Multi-view representation model based on graph autoencoder
收藏 引用
INFORMATION SCIENCES 2023年 第1期632卷 439-453页
作者: Li, Jingci Lu, Guangquan Wu, Zhengtian Ling, Fuqing Guangxi Normal Univ Key Lab Educ Blockchain & Intelligent Technol Minist Educ Guilin 541004 Peoples R China Guangxi Normal Univ Guangxi Key Lab Multisource Informat Min & Secur Guilin 541004 Peoples R China Suzhou Univ Sci & Technol Elect & Informat Engn Suzhou 215009 Peoples R China
graph representation learning is a hot topic in non-Euclidean data in various domains, such as social networks, biological networks, etc. When some data labels are missing, graph autoencoder and graph variational auto... 详细信息
来源: 评论
Multi-sample dual-decoder graph autoencoder
收藏 引用
METHODS 2023年 第1期211卷 31-41页
作者: He, Mengyao Zhao, Qingqing Zhang, Han Nankai Univ Coll Artificial Intelligence Tongyan Rd Tianjin 300350 Peoples R China
Self-supervised learning has shown superior performance on graph-related tasks in recent years. The most advanced methods are based on contrast learning, which severely limited by structured data augmentation techniqu... 详细信息
来源: 评论
Remaining useful life prediction of lithium battery based on multi decoder graph autoencoder and transformer network  7
Remaining useful life prediction of lithium battery based on...
收藏 引用
7th IFAC Conference on Engine and Powertrain Control, Simulation and Modeling (E-COSM)
作者: Ma, Yan Li, Jiaqi Gao, Jinwu Jilin Univ Dept Control Sci & Engn Changchun 130012 Peoples R China
Remaining useful life (RUL) of lithium-ion battery is important to maintain safe and reliable battery operation. Health indicators (HIs) are key features for predicting RUL during battery aging, whereas current method... 详细信息
来源: 评论
Pre-LogMGAE: Identification of Log Anomalies Using a Pre-trained Masked graph autoencoder  43
Pre-LogMGAE: Identification of Log Anomalies Using a Pre-tra...
收藏 引用
43rd International Symposium on Reliable Distributed Systems
作者: Wu, Aming Kwon, Young-Woo Kyungpook Natl Univ Sch Comp Sci & Engn Daegu South Korea
Log-based anomaly detection in software systems is becoming increasingly crucial for monitoring network operations and ensuring system security. Deep learning-based methods are widely used for large-scale log anomaly ... 详细信息
来源: 评论
ComMGAE: Community Aware Masked graph autoencoder  33rd
ComMGAE: Community Aware Masked Graph AutoEncoder
收藏 引用
33rd International Conference on Artificial Neural Networks and Machine Learning (ICANN)
作者: Jiang, Gaohang Jin, Xu Luo, Mengyu Chen, Jianxia Huang, Zhongwei Wang, Jing Hubei Univ Technol Sch Comp Sci Wuhan 430068 Peoples R China
Independent of graph augmentation techniques, graph autoencoders (GAEs) have yielded promising results in the realm of self-supervised learning. However, GAEs tend to over-emphasize proximity information at the expens... 详细信息
来源: 评论