咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 102 篇 工学
    • 86 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 9 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 28 篇 理学
    • 19 篇 生物学
    • 8 篇 数学
    • 4 篇 地球物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 115 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 10 篇 deep learning
  • 10 篇 graph convolutio...
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 graph convolutio...
  • 4 篇 task analysis
  • 4 篇 anomaly detectio...
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 kernel
  • 4 篇 network embeddin...

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 111 篇 英文
检索条件"主题词=Graph autoencoder"
115 条 记 录,以下是81-90 订阅
排序:
An Integrated Method Based on Wasserstein Distance and graph for Cancer Subtype Discovery
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023年 第6期20卷 3499-3510页
作者: Cao, Qingqing Zhao, Jianping Wang, Haiyun Guan, Qi Zheng, Chunhou Xinjiang Univ Coll Math & Syst Sci Urumqi 830046 Peoples R China Xinjiang Univ Inst Math & Phys Urumqi 830046 Peoples R China Anhui Univ Coll Comp Sci & Technol Hefei 230039 Peoples R China
Due to the complexity of cancer pathogenesis at different omics levels, it is necessary to find a comprehensive method to accurately distinguish and find cancer subtypes for cancer treatment. In this paper, we propose... 详细信息
来源: 评论
scGAMNN: graph Antoencoder-Based Single-Cell RNA Sequencing Data Integration Algorithm Using Mutual Nearest Neighbors
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2023年 第11期27卷 5665-5674页
作者: Zhang, Bai Wu, Hanwen Wang, Yan Xuan, Chenxu Gao, Jie Jiangnan Univ Sch Sci Wuxi 214122 Jiangsu Peoples R China
It is critical to correctly assemble high-dimensional single-cell RNA sequencing (scRNA-seq) datasets and downscale them for downstream analysis. However, given the complex relationships between cells, it remains a ch... 详细信息
来源: 评论
Deep emb e dde d clustering with distribution consistency preservation for attributed networks
收藏 引用
PATTERN RECOGNITION 2023年 139卷
作者: Zheng, Yimei Jia, Caiyan Yu, Jian Li, Xuanya Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing 100044 Peoples R China Beijing Key Lab Traff Data Anal & Min Beijing 100044 Peoples R China Baidu Online Network Technol Beijing Co Ltd Beijing 100085 Peoples R China
Many complex systems in the real world can be characterized as attributed networks. To mine the poten-tial information in these networks, deep embedded clustering, which obtains node representations and clusters simul... 详细信息
来源: 评论
LEARNING AND GENERATING SPATIAL CONCEPTS OF MODERNIST ARCHITECTURE VIA graph MACHINE LEARNING  29th
LEARNING AND GENERATING SPATIAL CONCEPTS OF MODERNIST ARCHIT...
收藏 引用
29th International Conference of the Association-for-Computer-Aided-Architectural-Design-Research-in-Asia (CAADRIA)
作者: Bauscher, Erik Dai, Anni Elshani, Diellza Wortmann, Thomas Univ Stuttgart Chair Comp Architecture Inst Computat Design & Construct Stuttgart Germany
This project showcases a use case away from most other research in the field of generative AI in architecture. We present a workflow to generate new, three-dimensional spatial configurations of buildings by sampling t... 详细信息
来源: 评论
Generalized graph Neural Network-Based Detection of False Data Injection Attacks in Smart Grids
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2023年 第3期7卷 618-630页
作者: Takiddin, Abdulrahman Atat, Rachad Ismail, Muhammad Boyaci, Osman Davis, Katherine R. Serpedin, Erchin Texas A&M Univ Dept Elect & Comp Engn College Stn TX 77843 USA Texas A&M Univ Qatar Dept Elect & Comp Engn Doha Qatar Tennessee Technol Univ Dept Comp Sci Cookeville TN 38505 USA
data injection attacks (FDIAs) pose a significant threat to smart power grids. Recent efforts have focused on developing machine learning (ML)-based defense strategies against such attacks. However, existing strategie... 详细信息
来源: 评论
Multi-channel Partial graph Integration Learning of Partial Multi-omics Data for Cancer Subtyping
收藏 引用
CURRENT BIOINFORMATICS 2023年 第8期18卷 680-691页
作者: Cao, Qing-Qing Zhao, Jian-ping Zheng, Chun-Hou Xinjiang Univ Coll Math & Syst Sci Urumqi Peoples R China Anhui Univ Sch Artificial Intelligence Hefei Peoples R China Xinjiang Univ Coll Math & Phys POB 830046 Urumqi Peoples R China Anhui Univ Coll Comp Sci & Technol POB 230039 Hefei Peoples R China
Background The appearance of cancer subtypes with different clinical significance fully reflects the high heterogeneity of cancer. At present, the method of multi-omics integration has become more and more mature. How... 详细信息
来源: 评论
Enhancing Heterophilic graph Neural Network Performance through Label Propagation in K-Nearest Neighbor graphs
Enhancing Heterophilic Graph Neural Network Performance thro...
收藏 引用
International Conference on Big Data and Smart Computing (BigComp)
作者: Park, Hyun Seok Park, Ha-Myung Kookmin Univ Seoul South Korea
How can we exploit Label Propagation (LP) to improve the performance of GNN models on heterophilic graphs? graph Neural Network (GNN) models have received a lot of attention as a powerful deep learning technology that... 详细信息
来源: 评论
An Improved graph Convolutional Neural Network based on graph Auto-encoder  16
An Improved Graph Convolutional Neural Network based on Grap...
收藏 引用
16th International Conference on Computer and Automation Engineering (ICCAE)
作者: Wang, Dongqi Du, Tianqi Liu, Zhongwu Chen, Dongming Ren, Tao Northeastern Univ Software Coll Shenyang Peoples R China
graph Convolutional Neural Networks (GCN) is a rapidly advancing deep learning algorithm for learning graph representations. One limitation of GCN is that it cannot guarantee optimal low-pass characteristics, thus str... 详细信息
来源: 评论
DEEP MULTI-graph EMBEDDED CLUSTERING FOR COMMUNITY DETECTION IN FMRI FUNCTIONAL BRAIN NETWORKS ACROSS INDIVIDUALS  31
DEEP MULTI-GRAPH EMBEDDED CLUSTERING FOR COMMUNITY DETECTION...
收藏 引用
2024 International Conference on Image Processing
作者: See, Kai-Jun Ting, Chee-Ming Noman, Fuad Loo, Junn Yong Tan, Yee-Fan Ombao, Hernando Phan, Raphael C. -W. Monash Univ Sch Informat Technol Subang Jaya Malaysia King Abdullah Univ Sci & Technol KAUST Stat Program Thuwal South Africa
Analyzing the community structure of brain networks provides new insights into human brain function. Existing studies broadly use conventional network clustering approaches. While graph neural networks have recently s... 详细信息
来源: 评论
A Novel Group Recommendation Model With Two-Stage Deep Learning
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2022年 第9期52卷 5853-5864页
作者: Huang, Zhenhua Liu, Yajun Zhan, Choujun Lin, Chen Cai, Weiwei Chen, Yunwen South China Normal Univ Sch Comp Sci Guangzhou 510631 Peoples R China Xiamen Univ Sch Informat Xiamen 361000 Peoples R China Cent South Univ Forestry & Technol Sch Logist & Transportat Changsha 410004 Peoples R China No Arizona Univ Grad Sch Flagstaff AZ 86011 USA DataGrand Inc Res & Dev Dept Shenzhen 518063 Peoples R China
Group recommendation has recently drawn a lot of attention to the recommender system community. Currently, several deep learning-based approaches are leveraged to learn preferences of groups for items and predict next... 详细信息
来源: 评论