咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 10 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
    • 1 篇 测绘科学与技术
    • 1 篇 生物工程
  • 6 篇 医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
    • 1 篇 临床医学
  • 5 篇 理学
    • 4 篇 生物学
    • 1 篇 数学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 13 篇 graph convolutio...
  • 2 篇 drug-target inte...
  • 2 篇 generative adver...
  • 2 篇 multi-omics inte...
  • 1 篇 drug-disease ass...
  • 1 篇 multivariate tim...
  • 1 篇 multicross domai...
  • 1 篇 wind turbine
  • 1 篇 deep learning
  • 1 篇 fully-connected ...
  • 1 篇 adversarial robu...
  • 1 篇 scada data
  • 1 篇 sparse gating st...
  • 1 篇 drugs
  • 1 篇 chemicals
  • 1 篇 network topology
  • 1 篇 lightgbm
  • 1 篇 spatial consiste...
  • 1 篇 phishing website...
  • 1 篇 potential friend...

机构

  • 2 篇 qufu normal univ...
  • 1 篇 chung ang univ d...
  • 1 篇 hohai univ coll ...
  • 1 篇 wuhan univ sch c...
  • 1 篇 tech univ madrid...
  • 1 篇 riken riken ctr ...
  • 1 篇 heilongjiang uni...
  • 1 篇 department of me...
  • 1 篇 heilongjiang uni...
  • 1 篇 anhui polytech u...
  • 1 篇 pazhou lab peopl...
  • 1 篇 univ tokyo grad ...
  • 1 篇 univ sci & techn...
  • 1 篇 indiana universi...
  • 1 篇 heilongjiang uni...
  • 1 篇 nanjing univ sci...
  • 1 篇 wuhan univ state...
  • 1 篇 chongqing univ s...
  • 1 篇 chiba univ ctr f...
  • 1 篇 nanjing forestry...

作者

  • 2 篇 xuan ping
  • 2 篇 liu jin-xing
  • 2 篇 zhang tiangang
  • 2 篇 li feng
  • 1 篇 wang yuezhu
  • 1 篇 hu jian
  • 1 篇 sun chang
  • 1 篇 alessandro corsi...
  • 1 篇 fabrizio bonacin...
  • 1 篇 zhao yan
  • 1 篇 liu jiahui
  • 1 篇 wang juan
  • 1 篇 jung jason j.
  • 1 篇 gao ling
  • 1 篇 zhang ye
  • 1 篇 gao yang
  • 1 篇 zhang limin
  • 1 篇 deng wenxiang
  • 1 篇 chen guohua
  • 1 篇 zhao zhuanzhe

语言

  • 12 篇 英文
  • 1 篇 其他
检索条件"主题词=Graph convolutional autoencoder"
13 条 记 录,以下是1-10 订阅
排序:
graph convolutional autoencoder and Fully-Connected autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2021年 第5期25卷 1793-1804页
作者: Xuan, Ping Gao, Ling Sheng, Nan Zhang, Tiangang Nakaguchi, Toshiya Heilongjiang Univ Sch Comp Sci & Technol Harbin 150080 Peoples R China Heilongjiang Univ Sch Math Sci Harbin 150080 Peoples R China Chiba Univ Ctr Frontier Med Engn Chiba 2638522 Japan
Predicting novel uses for approved drugs helps in reducing the costs of drug development and facilitates the development process. Most of previous methods focused on the multi-source data related to drugs and diseases... 详细信息
来源: 评论
graph convolutional autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022年 第1期19卷 455-464页
作者: Sun, Chang Xuan, Ping Zhang, Tiangang Ye, Yilin Heilongjiang Univ Dept Comp Sci & Technol Harbin 150080 Heilongjiang Peoples R China Heilongjiang Univ Dept Math Sci Harbin 150080 Heilongjiang Peoples R China
The computational prediction of novel drug-target interactions (DTIs) may effectively speed up the process of drug repositioning and reduce its costs. Most previous methods integrated multiple kinds of connections abo... 详细信息
来源: 评论
Drug-target interaction prediction based on spatial consistency constraint and graph convolutional autoencoder
收藏 引用
BMC BIOINFORMATICS 2023年 第1期24卷 1-21页
作者: Chen, Peng Zheng, Haoran Univ Sci & Technol China Sch Comp Sci & Technol Jinzhai Rd 96 Hefei 230027 Peoples R China Univ Sci & Technol China Anhui Key Lab Software Engn Comp & Commun Jinzhai Rd 96 Hefei 230027 Peoples R China
BackgroundDrug-target interaction (DTI) prediction plays an important role in drug discovery and repositioning. However, most of the computational methods used for identifying relevant DTIs do not consider the invaria... 详细信息
来源: 评论
MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities graph convolutional autoencoder
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2023年 第7期27卷 3686-3694页
作者: Wang, Ying Gao, Ying-Lian Wang, Juan Li, Feng Liu, Jin-Xing Qufu Normal Univ Sch Comp Sci Rizhao 276826 Peoples R China Qufu Normal Univ Qufu Normal Univ Lib Rizhao 276826 Peoples R China
Identifying drug-disease associations (DDAs) is critical to the development of drugs. Traditional methods to determine DDAs are expensive and inefficient. Therefore, it is imperative to develop more accurate and effec... 详细信息
来源: 评论
Semi-supervised overlapping community detection in attributed graph with graph convolutional autoencoder
收藏 引用
INFORMATION SCIENCES 2022年 608卷 1464-1479页
作者: He, Chaobo Zheng, Yulong Cheng, Junwei Tang, Yong Chen, Guohua Liu, Hai South China Normal Univ Sch Comp Sci Guangzhou 510631 Peoples R China Pazhou Lab Guangzhou 510335 Peoples R China
Community detection in attributed graph is of great application value and many related methods have been continually presented. However, existing methods for community detection in attributed graph still cannot well s... 详细信息
来源: 评论
SGEGCAE: A Sparse Gating Enhanced graph convolutional autoencoder for Multi-omics Data Integration and Classification  20th
SGEGCAE: A Sparse Gating Enhanced Graph Convolutional Autoen...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Shang, Junliang Zhang, Limin Zhao, Linqian He, Xin Zhao, Yan Ge, Daohui Liu, Jin-Xing Li, Feng Qufu Normal Univ Sch Comp Sci Rizhao 276800 Peoples R China Univ Hlth & Rehabil Sci Sch Hlth & Life Sci Qingdao 266000 Peoples R China
Integration of multi-omics data is essential for obtaining comprehensive insights into molecular mechanisms of complex diseases. While several methods have been proposed for analyzing multi-omics data in various appli... 详细信息
来源: 评论
ScMOGAE: A graph convolutional autoencoder-Based Multi-omics Data Integration Framework for Single-Cell Clustering  20th
ScMOGAE: A Graph Convolutional Autoencoder-Based Multi-omics...
收藏 引用
20th International Symposium on Bioinformatics Research and Applications (ISBRA)
作者: Zhou, Benjie Jiang, Hongyang Wang, Yuezhu Gu, Yujie Sun, Huiyan Jilin Univ Sch Artificial Intelligence Changchun 130012 Peoples R China Jilin Univ Int Ctr Future Sci Changchun Peoples R China MOE Engn Res Ctr Knowledge Driven Human Machine Intel Changchun Peoples R China
The integration of single-cell multi-omics data is a significant step forward in our understanding of the complex biological systems at the cellular level. This approach allows for the simultaneous analysis of various... 详细信息
来源: 评论
Federated learning enabled graph convolutional autoencoder and factorization machine for potential friendship prediction in social networks
收藏 引用
INFORMATION FUSION 2024年 102卷
作者: Hu, He-xuan Cao, Chengcheng Hu, Qiang Zhang, Ye Hohai Univ Key Lab Water Big Data Technol Minist Water Resources Nanjing 211100 Peoples R China Hohai Univ Coll Comp & Informat Nanjing 211100 Peoples R China
Friendships are the keystone of social networks. Predicting potential friendships of users in social networks has become a critical task in the real world. However, the computational models proposed by previous resear... 详细信息
来源: 评论
A novel intelligent multicross domain fault diagnosis of servo motor-bearing system based on Domain Generalized graph Convolution autoencoder
收藏 引用
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL 2025年 第3期24卷 1485-1499页
作者: Zhao, Xiaoli Hu, Yuanhao Liu, Jiahui Yao, Jianyong Deng, Wenxiang Hu, Jian Zhao, Zhuanzhe Yan, Xiaoan Nanjing Univ Sci & Technol Sch Mech Engn Nanjing 210094 Peoples R China Chongqing Univ State Key Lab Mech Transmission Adv Equipment Chongqing Peoples R China Anhui Polytech Univ Sch Artificial Intelligence Wuhu Peoples R China Nanjing Forestry Univ Sch Mechatron Engn Nanjing Peoples R China
The data measured by the servo motor-bearing system under complex working conditions will present problems such as amplitude fluctuations, unequal impact intervals, and significant differences in data distribution, an... 详细信息
来源: 评论
Improving the Adversarial Robustness of Machine Learning-based Phishing Website Detectors: An autoencoder-based Auxiliary Approach  58
Improving the Adversarial Robustness of Machine Learning-bas...
收藏 引用
58th Hawaii International Conference on System Sciences, HICSS 2025
作者: Gao, Yang Samtani, Sagar Shah, Ankit Indiana University United States
Anti-phishing research relies on collaboration between defensive and offensive efforts. The defensive side develops machine learning-based phishing website detectors to protect users from phishing attacks. However, ad... 详细信息
来源: 评论