咨询与建议

限定检索结果

文献类型

  • 286 篇 期刊文献
  • 117 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 404 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 362 篇 工学
    • 250 篇 计算机科学与技术...
    • 118 篇 电气工程
    • 52 篇 信息与通信工程
    • 39 篇 控制科学与工程
    • 35 篇 软件工程
    • 22 篇 交通运输工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 机械工程
    • 13 篇 仪器科学与技术
    • 13 篇 石油与天然气工程
    • 12 篇 动力工程及工程热...
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 环境科学与工程(可...
    • 11 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 8 篇 测绘科学与技术
    • 7 篇 生物工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 安全科学与工程
  • 88 篇 理学
    • 42 篇 生物学
    • 18 篇 物理学
    • 17 篇 化学
    • 12 篇 数学
    • 10 篇 地球物理学
  • 51 篇 医学
    • 29 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 8 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 38 篇 管理学
    • 36 篇 管理科学与工程(可...
  • 12 篇 农学
  • 2 篇 教育学
  • 1 篇 经济学
  • 1 篇 文学

主题

  • 404 篇 graph convolutio...
  • 53 篇 deep learning
  • 29 篇 attention mechan...
  • 22 篇 feature extracti...
  • 20 篇 convolutional ne...
  • 15 篇 knowledge graph
  • 12 篇 machine learning
  • 11 篇 task analysis
  • 9 篇 fault diagnosis
  • 9 篇 traffic predicti...
  • 8 篇 node classificat...
  • 8 篇 convolution
  • 8 篇 predictive model...
  • 8 篇 emotion recognit...
  • 8 篇 data models
  • 7 篇 convolutional ne...
  • 6 篇 graph neural net...
  • 6 篇 action recogniti...
  • 6 篇 eeg
  • 6 篇 deep reinforceme...

机构

  • 5 篇 nanjing univ aer...
  • 4 篇 hunan univ coll ...
  • 3 篇 kunming univ sci...
  • 3 篇 kunming univ sci...
  • 3 篇 hunan univ sci &...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ pos...
  • 3 篇 southeast univ s...
  • 3 篇 fudan univ sch d...
  • 3 篇 shandong normal ...
  • 3 篇 tsinghua univ de...
  • 3 篇 shanghai univ sc...
  • 2 篇 kunming univ sci...
  • 2 篇 tongji univ coll...
  • 2 篇 dalian univ tech...
  • 2 篇 mcgill univ dept...
  • 2 篇 guangdong univ t...
  • 2 篇 natl univ singap...
  • 2 篇 univ chinese aca...
  • 2 篇 tongji univ sch ...

作者

  • 6 篇 peng wei
  • 5 篇 dai wei
  • 4 篇 liang wei
  • 3 篇 jian wang
  • 3 篇 zhang lei
  • 3 篇 chen tielin
  • 3 篇 fu yanwei
  • 3 篇 hu na
  • 3 篇 li zhuwen
  • 3 篇 zhang dafang
  • 3 篇 han cheol e.
  • 3 篇 wang bin
  • 3 篇 huang liya
  • 3 篇 li qi
  • 3 篇 zhang yinda
  • 3 篇 xie kun
  • 2 篇 zhang yiling
  • 2 篇 zhao zhiguo
  • 2 篇 zhang yuhang
  • 2 篇 porras antonio r...

语言

  • 385 篇 英文
  • 17 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Graph convolutional neural network"
404 条 记 录,以下是61-70 订阅
排序:
A graph convolutional neural network for Recommendation Based on Community Detection and Combination of Multiple Heterogeneous graphs  23
A Graph Convolutional Neural Network for Recommendation Base...
收藏 引用
23rd IEEE International Conference on Data Mining (IEEE ICDM)
作者: Mu, Caihong Huang, Heyuan Fang, Yunfei Liu, Yi Xidian Univ Xian Peoples R China
graph convolutional neural networks (GCNs) have performed well in many recommendation scenarios. In spite of this, recommendation models based on GCNs still face problems such as insufficient information mining and hi... 详细信息
来源: 评论
Safety analysis of new power system based on graph convolutional neural network evaluation  10
Safety analysis of new power system based on graph convoluti...
收藏 引用
10th International Forum on Electrical Engineering and Automation, IFEEA 2023
作者: Huang, Jianye Wu, Fei Li, Yangdi Qian, Jian Yang, Yan Yao, Wenxu State Grid Fujian Electric Power Co. Ltd. Electric Power Science Research Institute Fujian China
Although the efficient application of emerging technologies such as cloud computing, big data, and image recognition in the supervision of new power systems has effectively improved the supervisory effectiveness of po... 详细信息
来源: 评论
GCN-MHSA: A novel malicious traffic detection method based on graph convolutional neural network and multi-head self-attention mechanism
收藏 引用
COMPUTERS & SECURITY 2024年 147卷
作者: Chen, Jinfu Xie, Haodi Cai, Saihua Song, Luo Geng, Bo Guo, Wuhao Jiangsu Univ Sch Comp Sci & Commun Engn 301 Xuefu Rd Zhenjiang 212013 Jiangsu Peoples R China Jiangsu Univ Jiangsu Key Lab Secur Technol Ind Cyberspace 301 Xuefu Rd Zhenjiang 212013 Jiangsu Peoples R China Asiainfo Secur Technol Co Ltd Nanjing 210012 Jiangsu Peoples R China
With the increasing size and complexity of network, network traffic becomes more and more correlated with each other, and the traditional manner of presenting network traffic in a Euclidean structure is difficult to e... 详细信息
来源: 评论
Study of crystal properties based on attention mechanism and crystal graph convolutional neural network
收藏 引用
JOURNAL OF PHYSICS-CONDENSED MATTER 2022年 第19期34卷 195901-195901页
作者: Wang, Buwei Fan, Qian Yue, Yunliang Yangzhou Univ Coll Informat Engn Yangzhou Jiangsu Peoples R China
The prediction of crystal properties has always been limited by huge computational costs. In recent years, the rise of machine learning methods has gradually made it possible to study crystal properties on a large sca... 详细信息
来源: 评论
Space Target Material Identification Based on graph convolutional neural network
收藏 引用
REMOTE SENSING 2023年 第7期15卷 1937-1937页
作者: Li, Na Gong, Chengeng Zhao, Huijie Ma, Yun Beihang Univ Inst Artificial Intelligence Beijing 100091 Peoples R China Minist Educ Key Lab Precis Optomechatron Technol Beijing 100091 Peoples R China Beihang Univ Sch Instrumentat & Optoelect Engn Beijing 100191 Peoples R China Changguang Satellite Technol Co Ltd Changchun 130000 Peoples R China
Under complex illumination conditions, the spectral data distributions of a given material appear inconsistent in the hyperspectral images of the space target, making it difficult to achieve accurate material identifi... 详细信息
来源: 评论
Cellular network Fault Diagnosis Method Based on a graph convolutional neural network
收藏 引用
SENSORS 2023年 第16期23卷 7042-7042页
作者: Amuah, Ebenezer Ackah Wu, Mingxiao Zhu, Xiaorong Nanjing Univ Posts & Telecommun Jiangsu Key Lab Wireless Commun Nanjing 210003 Peoples R China
The efficient and accurate diagnosis of faults in cellular networks is crucial for ensuring smooth and uninterrupted communication services. In this paper, we propose an improved 4G/5G network fault diagnosis with a f... 详细信息
来源: 评论
Attention enhanced capsule network for text classification by encoding syntactic dependency trees with graph convolutional neural network
收藏 引用
PEERJ COMPUTER SCIENCE 2022年 8卷 e831页
作者: Jia, Xudong Wang, Li Taiyuan Univ Technol Coll Data Sci Taiyuan Shanxi Peoples R China
Text classification is a fundamental task in many applications such as topic labeling, sentiment analysis, and spam detection. The text syntactic relationship and word sequence are important and useful for text classi... 详细信息
来源: 评论
Epilepsy EEG Seizure Prediction Based on the Combination of graph convolutional neural network Combined with Long- and Short-Term Memory Cell network
收藏 引用
APPLIED SCIENCES-BASEL 2024年 第24期14卷 11569页
作者: Kuang, Zhejun Liu, Simin Zhao, Jian Wang, Liu Li, Yunkai Changchun Univ Sci & Technol Sch Comp Sci & Technol Changchun 130022 Peoples R China Changchun Univ Key Lab Intelligent Rehabil & Barrier Free Disable Changchun 130000 Peoples R China Changchun Univ Sch Comp Sci & Technol Jilin Prov Key Lab Human Hlth Status Identificat & Changchun 130032 Peoples R China
With the increasing research of deep learning in the EEG field, it becomes more and more important to fully extract the characteristics of EEG signals. Traditional EEG signal classification prediction neither consider... 详细信息
来源: 评论
Facial expression recognition based on landmark-guided graph convolutional neural network
收藏 引用
JOURNAL OF ELECTRONIC IMAGING 2022年 第2期31卷 023025-023025页
作者: Meng, Hao Yuan, Fei Tian, Yang Yan, Tianhao Harbin Engn Univ Coll Intelligent Syst Sci & Engn Harbin Peoples R China Harbin Engn Univ Minist Educ Key Lab Intelligent Technol & Applicat Marine Equ Harbin Peoples R China
convolutional neural network (CNN)-based facial emotion recognition (FER) lacks structural information, which affects the accuracy of FER. To automatically extract structural features and enrich the representation of ... 详细信息
来源: 评论
MVGCN: Multi-View graph convolutional neural network for Surface Defect Identification Using Three-Dimensional Point Cloud
收藏 引用
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME 2023年 第3期145卷 031004-031004页
作者: Wang, Yinan Sun, Wenbo Jin, Jionghua (Judy) Kong, Zhenyu (James) Yue, Xiaowei Rensselaer Polytech Inst Dept Ind & Syst Engn Troy NY 12180 USA Univ Michigan Transportat Res Inst Ann Arbor MI 48109 USA Univ Michigan Dept Ind & Operat Engn Ann Arbor MI 48109 USA Virginia Tech Grad Dept Ind & Syst Engn Blacksburg VA 24060 USA
Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been ... 详细信息
来源: 评论