咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 12 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 软件工程
    • 1 篇 信息与通信工程
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 12 篇 graph node class...
  • 3 篇 graph neural net...
  • 2 篇 multi-label clas...
  • 2 篇 graph convolutio...
  • 2 篇 feature extracti...
  • 1 篇 aggregates
  • 1 篇 learning systems
  • 1 篇 representation l...
  • 1 篇 scalability
  • 1 篇 message passing
  • 1 篇 graph attention ...
  • 1 篇 selective sampli...
  • 1 篇 neuroevolution
  • 1 篇 anomaly detectio...
  • 1 篇 hands
  • 1 篇 systematics
  • 1 篇 electronic mail
  • 1 篇 stacking
  • 1 篇 homogeneous and ...
  • 1 篇 self-supervised ...

机构

  • 2 篇 nanjing univ sci...
  • 1 篇 cent south univ ...
  • 1 篇 univ chicago dep...
  • 1 篇 texas tech univ ...
  • 1 篇 astar inst infoc...
  • 1 篇 wuyi univ intell...
  • 1 篇 peking univ sch ...
  • 1 篇 univ massachuset...
  • 1 篇 northwestern pol...
  • 1 篇 sun yat sen univ...
  • 1 篇 hohai univ coll ...
  • 1 篇 pazhou lab peopl...
  • 1 篇 uiuc adv digital...
  • 1 篇 guangxi univ ins...
  • 1 篇 changsha univ sc...
  • 1 篇 coordinat ctr ch...
  • 1 篇 sensedeal intell...
  • 1 篇 south china univ...
  • 1 篇 amirkabir univ t...
  • 1 篇 south china univ...

作者

  • 2 篇 zhang jing
  • 2 篇 zhang lijun
  • 2 篇 zhou cangqi
  • 1 篇 wang hongyu
  • 1 篇 li haifeng
  • 1 篇 zhang tong
  • 1 篇 chen c. l. phili...
  • 1 篇 zheng ruigang
  • 1 篇 zhao peilin
  • 1 篇 gao kaisheng
  • 1 篇 pan ying
  • 1 篇 deng bowen
  • 1 篇 fu xinsha
  • 1 篇 liu xiao
  • 1 篇 xu yuebin
  • 1 篇 feng guocan
  • 1 篇 jiang aimin
  • 1 篇 chen geng
  • 1 篇 li qingguang
  • 1 篇 luo qinyao

语言

  • 12 篇 英文
检索条件"主题词=Graph node classification"
12 条 记 录,以下是1-10 订阅
排序:
Semi-supervised graph Embedding for Multi-label graph node classification  20th
Semi-supervised Graph Embedding for Multi-label Graph Node C...
收藏 引用
20th International Conference on Web Information Systems Engineering (WISE)
作者: Gao, Kaisheng Zhang, Jing Zhou, Cangqi Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China
The graph convolution network (GCN) is a widely-used facility to realize graph-based semi-supervised learning, which usually integrates node, features, and graph topologic information to build learning models. However... 详细信息
来源: 评论
Multi-label graph node classification with label attentive neighborhood convolution
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 180卷 115063-115063页
作者: Zhou, Cangqi Chen, Hui Zhang, Jing Li, Qianmu Hu, Dianming Sheng, Victor S. Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China Wuyi Univ Intelligent Mfg Dept Jiangmen 529020 Peoples R China SenseDeal Intelligent Technol Co Ltd Beijing 100084 Peoples R China Texas Tech Univ Dept Comp Sci Lubbock TX 79409 USA
Learning with graph structured data is of great significance for many practical applications. A crucial and fundamental task in graph learning is node classification. In reality, graph nodes are often encoded with var... 详细信息
来源: 评论
Semi-supervised node classification via adaptive graph smoothing networks
收藏 引用
PATTERN RECOGNITION 2022年 124卷 108492-108492页
作者: Zheng, Ruigang Chen, Weifu Feng, Guocan Sun Yat Sen Univ Sch Math Guangzhou Peoples R China Sun Yat Sen Univ Guangdong Prov Key Lab Computat Sci Guangzhou Peoples R China
Inspections on current graph neural networks suggest us to reconsider the computational aspect of the final aggregation. We consider that such aggregations perform a prediction smoothing and impute their potential dra... 详细信息
来源: 评论
SGB-Net: Scalable graph Broad Network
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025年
作者: Xu, Yuebin Chen, C. L. Philip Wu, Mengqi Zhang, Tong South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China South China Univ Technol Guangdong Prov Key Lab Computat AI Models & Cognit Guangzhou 510006 Peoples R China Pazhou Lab Guangzhou 510335 Peoples R China Minist Educ Hlth Intelligent Percept & Paralleled Engn Res Ctr Guangzhou 510006 Peoples R China
Due to the complexity and self-evolutionary property of graph data in reality, graph learning methods require both validity to represent unstructured data and scalability to adapt to evolving graphs. However, current ... 详细信息
来源: 评论
AEGCN: An Autoencoder-Constrained graph Convolutional Network
收藏 引用
NEUROCOMPUTING 2021年 432卷 21-31页
作者: Ma, Mingyuan Na, Sen Wang, Hongyu Peking Univ Sch Elect Engn & Comp Sci Beijing Peoples R China Univ Chicago Dept Stat Chicago IL 60637 USA Coordinat Ctr China Natl Comp Network Emergency Response Tech Team Beijing Peoples R China
We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains. As suggested by its name, the core of this model is a con... 详细信息
来源: 评论
Information-Enhanced graph Neural Network for Transcending Homophily Barriers
收藏 引用
IEEE ACCESS 2024年 12卷 194804-194815页
作者: Liu, Xiao Zhang, Lijun Guan, Hui Univ Massachusetts Amherst Coll Informat & Comp Sci Amherst MA 01002 USA
Homophily and heterophily are intrinsic properties of graphs that describe whether linked nodes share similar properties. While Message Passing Neural Networks (MPNNs) have shown remarkable success in node classificat... 详细信息
来源: 评论
DE-GCN: Differential Evolution as an optimization algorithm for graph Convolutional Networks  26
DE-GCN: Differential Evolution as an optimization algorithm ...
收藏 引用
26th International Computer Conference of the Computer-Society-of-Iran
作者: Tasharrofi, Shakiba Taheri, Hassan Amirkabir Univ Technol Elect Engn Dept Digital Elect Syst Tehran Iran Amirkabir Univ Technol Elect Engn Dept Tehran Iran
Neural networks had impressive results in recent years. Although neural networks only performed using Euclidean data in past decades, many data-sets in the real world have graph structures. This gap led researchers to... 详细信息
来源: 评论
An Aggressive graph-based Selective Sampling Algorithm for classification  15
An Aggressive Graph-based Selective Sampling Algorithm for C...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Yang, Peng Zhao, Peilin Zheng, Vincent W. Li, Xiao-Li ASTAR Inst Infocomm Res Singapore 138632 Singapore UIUC Adv Digital Sci Ctr Singapore 138632 Singapore
Traditional online learning algorithms are designed for vector data only, which assume that the labels of all the training examples are provided. In this paper, we study graph classification where only limited nodes a... 详细信息
来源: 评论
DYNAMIC graph CONVOLUTIONAL NETWORK: A TOPOLOGY OPTIMIZATION PERSPECTIVE  31
DYNAMIC GRAPH CONVOLUTIONAL NETWORK: A TOPOLOGY OPTIMIZATION...
收藏 引用
IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)
作者: Deng, Bowen Jiang, Aimin Hohai Univ Coll Internet Things Engn Changzhou Peoples R China
Recently, graph convolutional networks(GCNs) have drawn increasing attention in many domains, e.g., social networks, recommendation systems. It's known that, in the task of graph node classification, inter-class e... 详细信息
来源: 评论
Heterogeneous graph Attribute Completion via Efficient Meta-path Context-Aware Learning  6th
Heterogeneous Graph Attribute Completion via Efficient Meta-...
收藏 引用
6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Zhang, Lijun Chen, Geng Wang, Qingyue Wang, Peng Northwestern Polytech Univ Sch Comp Sci Xian Peoples R China Northwestern Polytech Univ Ningbo Inst Xian Peoples R China
Heterogeneous graph attribute completion (HGAC) is an emerging research direction and has drawn increasing research attention in recent years. Although making significant progress, existing HGAC methods suffer from th... 详细信息
来源: 评论