咨询与建议

限定检索结果

文献类型

  • 112 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 164 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 158 篇 工学
    • 137 篇 计算机科学与技术...
    • 52 篇 电气工程
    • 17 篇 软件工程
    • 15 篇 控制科学与工程
    • 10 篇 信息与通信工程
    • 4 篇 测绘科学与技术
    • 4 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 材料科学与工程(可...
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 机械工程
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
  • 17 篇 理学
    • 6 篇 生物学
    • 3 篇 数学
    • 3 篇 化学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 地球物理学
    • 1 篇 地理学
    • 1 篇 系统科学
  • 17 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 3 篇 特种医学
  • 13 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 1 篇 农学

主题

  • 164 篇 graph structure ...
  • 41 篇 graph neural net...
  • 24 篇 graph neural net...
  • 11 篇 deep learning
  • 11 篇 contrastive lear...
  • 11 篇 graph convolutio...
  • 10 篇 anomaly detectio...
  • 9 篇 traffic forecast...
  • 8 篇 multivariate tim...
  • 8 篇 multivariate tim...
  • 7 篇 feature extracti...
  • 7 篇 graph representa...
  • 7 篇 data models
  • 6 篇 time series anal...
  • 5 篇 self-supervised ...
  • 5 篇 predictive model...
  • 4 篇 message passing
  • 4 篇 next poi recomme...
  • 4 篇 noise
  • 4 篇 fraud detection

机构

  • 7 篇 univ chinese aca...
  • 3 篇 china jiliang un...
  • 3 篇 beijing univ pos...
  • 3 篇 beihang univ peo...
  • 3 篇 shanghai jiao to...
  • 3 篇 chinese acad sci...
  • 3 篇 peng cheng lab p...
  • 3 篇 shanghai univ sc...
  • 3 篇 yantai univ sch ...
  • 2 篇 kunming univ sci...
  • 2 篇 chinese acad sci...
  • 2 篇 hangzhou dianzi ...
  • 2 篇 inst network tec...
  • 2 篇 tsinghua univ de...
  • 2 篇 monash univ clay...
  • 2 篇 georgia state un...
  • 2 篇 city univ hong k...
  • 2 篇 hong kong univ s...
  • 2 篇 univ sci & techn...
  • 2 篇 changsha univ sc...

作者

  • 5 篇 liu zhaowei
  • 4 篇 yang dong
  • 4 篇 cao feilong
  • 4 篇 xu lingyu
  • 4 篇 shi chuan
  • 3 篇 peng hao
  • 3 篇 li genxin
  • 3 篇 wang xiao
  • 3 篇 zhu yanqiao
  • 3 篇 wang liang
  • 3 篇 he shiming
  • 3 篇 xie junyuan
  • 3 篇 yu jie
  • 3 篇 pan shirui
  • 3 篇 pan chunhong
  • 3 篇 lu mingjie
  • 3 篇 wang li
  • 3 篇 yuan jinliang
  • 3 篇 liu qiang
  • 3 篇 wu shu

语言

  • 162 篇 英文
  • 2 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"主题词=Graph structure learning"
164 条 记 录,以下是1-10 订阅
排序:
graph structure learning via Transfer Entropy for Multivariate Time Series Anomaly Detection
Graph Structure Learning via Transfer Entropy for Multivaria...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Liu, Mingyu Wang, Yijie Zhou, Xiaohui Wang, Yongjun National Key Laboratory of Parallel and Distributed Computing College of Computer Science and Technology National University of Defense Technology Changsha China College of Computer Science and Technology National University of Defense Technology Changsha China
Multivariate time series anomaly detection (MTAD) poses a challenge due to temporal and feature dependencies. The critical aspects of enhancing the detection performance lie in accurately capturing the dependencies be... 详细信息
来源: 评论
Uni-directional graph structure learning-based multivariate time series anomaly detection with dynamic prior knowledge
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE learning AND CYBERNETICS 2025年 第1期16卷 267-283页
作者: He, Shiming Li, Genxin Wang, Jin Xie, Kun Sharma, Pradip Kumar Changsha Univ Sci & Technol Key Lab Safety Control Bridge Engn Minist Educ Changsha 410114 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Peoples R China Univ Aberdeen Comp Sci Aberdeen AB24 3FX Scotland
In the Internet of Things (IoT) system, sensors generate a vast amount of multivariate time series data and transmit it to the data center for aggregation and analysis. However, due to equipment failure or attacks, th... 详细信息
来源: 评论
Anomaly Detection Over Multi-Relational graphs Using graph structure learning and Multi-Scale Meta-Path graph Aggregation
收藏 引用
IEEE ACCESS 2025年 13卷 60303-60316页
作者: Zhang, Chi Jeong, Junho Jung, Jin-Woo Dongguk Univ Dept Comp Sci & Engn Seoul 04620 South Korea
graph Neural Networks (GNNs) have recently achieved remarkable success in various learning tasks involving graph-structured data. However, their application to multi-relational graph anomaly detection problems on real... 详细信息
来源: 评论
A novel spatial-temporal graph convolution network based on temporal embedding graph structure learning for multivariate time series prediction
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 141卷
作者: Lei, Tianyang Li, Jichao Yang, Kewei Gong, Chang Natl Univ Def Technol Coll Syst Engn Changsha 410000 Peoples R China
The prediction of multivariate time series is a pivotal research area in data mining, offering extensive practical applications in many real-world scenarios, including transportation, finance, energy systems, the Inte... 详细信息
来源: 评论
GSL-Mash: Enhancing Mashup Creation Service Recommendations Through graph structure learning  22nd
GSL-Mash: Enhancing Mashup Creation Service Recommendations ...
收藏 引用
22nd International Conference on Service Oriented Computing
作者: Liu, Sihao Liu, Mingyi Jiang, Tianyu Yu, Shuang Xu, Hanchuan Wang, Zhongjie Harbin Inst Technol Fac Comp Harbin Peoples R China
The proliferation of Web APIs has facilitated the creation of numerous software applications through the integration of diverse services, commonly referred to as mashups. However, the growing complexity and number of ... 详细信息
来源: 评论
Uncertainty-Aware graph structure learning  25
Uncertainty-Aware Graph Structure Learning
收藏 引用
34th ACM Web Conference, WWW 2025
作者: Han, Shen Zhou, Zhiyao Chen, Jiawei Hao, Zhezheng Zhou, Sheng Wang, Gang Feng, Yan Chen, Chun Wang, Can The State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou China Zhejiang University Hangzhou China College of Computer Science and Technology Zhejiang University China Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security China Northwestern Polytechnical University Xi’an China Bangsun Technology Hangzhou China
graph Neural Networks (GNNs) have become a prominent approach for learning from graph-structured data. However, their effectiveness can be significantly compromised when the graph structure is suboptimal. To address t... 详细信息
来源: 评论
graph structure learning-Based Multivariate Time Series Anomaly Detection in Internet of Things for Human-Centric Consumer Applications
收藏 引用
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2024年 第3期70卷 5419-5431页
作者: He, Shiming Li, Genxin Yi, Tongzhijian Alfarraj, Osama Tolba, Amr Sangaiah, Arun Kumar Sherratt, R. Simon Changsha Univ Sci & Technol Sch Comp & Commun Engn Changsha 410114 Peoples R China Changsha Univ Sci & Technol Hunan Prov Key Lab Intelligent Proc Big Data Trans Changsha 410114 Peoples R China King Saud Univ Community Coll Comp Sci Dept Riyadh 11437 Saudi Arabia Natl Yunlin Univ Sci & Technol Int Grad Sch AI Touliu 64002 Taiwan Sunway Univ Sch Engn & Technol Petaling Jaya 47500 Malaysia Univ Reading Dept Biomed Engn Reading RG6 6AY England
As the Internet of Things system becomes more popular and ubiquitous, it has also gradually entered the consumer electronics field. For example, smart home systems have numerous sensors that monitor the environment an... 详细信息
来源: 评论
graph structure learning With Automatic Search of Hyperparameters Based on Genetic Programming
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2024年 第6期8卷 4155-4164页
作者: Wang, Pengda Lu, Mingjie Yan, Weiqing Yang, Dong Liu, Zhaowei Univ Sci & Technol China Hefei 230026 Anhui Peoples R China Yantai Univ Sch Comp & Control Engn Yantai 264005 Peoples R China Georgia State Univ Dept Comp Sci Atlanta GA 30303 USA
graph neural networks (GNNs) rely heavily on graph structures and artificial hyperparameters, which may increase computation and affect performance. Most GNNs use original graphs, but the original graph data has probl... 详细信息
来源: 评论
graph structure learning based on feature and label consistency
收藏 引用
INTELLIGENT DATA ANALYSIS 2022年 第6期26卷 1539-1555页
作者: Yuan, Jinliang Yao, Yirong Xu, Ming Yu, Hualei Xie, Junyuan Wang, Chongjun Nanjing Univ Dept Comp Sci & Technol Nanjing Jiangsu Peoples R China Nanjing Univ Natl Key Lab Novel Software Technol Nanjing Jiangsu Peoples R China
graph Neural Networks (GNNs) have achieved remarkable success in graph-related tasks by combining node features and graph topology elegantly. Most GNNs assume that the networks are homophilous, which is not always tru... 详细信息
来源: 评论
A graph structure-Feature learning Network for Diagnosing Alzheimer’s Disease Based on Multi-modal Brain Biometric Feature  18th
A Graph Structure-Feature Learning Network for Diagnosing A...
收藏 引用
18th Chinese Conference on Biometric Recognition, CCBR 2024
作者: Shang, Dongxu Wang, Huabin Zhang, Mengxin Peng, Yuhang Ye, Xingjian Wang, Zilin Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging School of Computer Science and Technology Anhui University Anhui Hefei China Stony Brook Institute at Anhui University Anhui Hefei China
Alzheimer’s Disease (AD) is a neurodegenerative disease, typically identified and diagnosed through brain biometric feature. However, certain common brain biometric feature exist among patients in different stages of... 详细信息
来源: 评论