咨询与建议

限定检索结果

文献类型

  • 58 篇 期刊文献
  • 35 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 96 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 89 篇 工学
    • 73 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 12 篇 信息与通信工程
    • 12 篇 软件工程
    • 8 篇 控制科学与工程
    • 5 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 环境科学与工程(可...
  • 16 篇 理学
    • 5 篇 数学
    • 5 篇 物理学
    • 3 篇 生物学
    • 2 篇 地球物理学
    • 1 篇 地理学
  • 12 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 10 篇 医学
    • 8 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 1 篇 农学

主题

  • 96 篇 graph-based lear...
  • 28 篇 semi-supervised ...
  • 8 篇 label propagatio...
  • 7 篇 deep learning
  • 7 篇 classification
  • 5 篇 optimization
  • 5 篇 active learning
  • 4 篇 transductive lea...
  • 4 篇 text classificat...
  • 4 篇 synthetic apertu...
  • 4 篇 machine learning
  • 4 篇 training
  • 3 篇 acoustic modelin...
  • 3 篇 graph convolutio...
  • 3 篇 k-associated gra...
  • 3 篇 contrastive lear...
  • 3 篇 multi-task learn...
  • 3 篇 graph neural net...
  • 3 篇 image retrieval
  • 3 篇 stock prediction

机构

  • 7 篇 univ washington ...
  • 3 篇 univ sci & techn...
  • 3 篇 univ minnesota s...
  • 3 篇 microsoft res as...
  • 3 篇 tsinghua univ pe...
  • 3 篇 univ calif los a...
  • 3 篇 natl univ singap...
  • 2 篇 fujitsu res & de...
  • 2 篇 univ sci & techn...
  • 2 篇 univ wisconsin d...
  • 2 篇 univ sao paulo i...
  • 1 篇 guangdong key la...
  • 1 篇 univ sci & techn...
  • 1 篇 university of sc...
  • 1 篇 xinjiang univ xi...
  • 1 篇 guangdong univ e...
  • 1 篇 univ fed mato gr...
  • 1 篇 hangzhou dianzi ...
  • 1 篇 guangdong polyte...
  • 1 篇 russian acad sci...

作者

  • 6 篇 rossi rafael ger...
  • 5 篇 chua tat-seng
  • 5 篇 lopes alneu de a...
  • 5 篇 kirchhoff katrin
  • 4 篇 zha zheng-jun
  • 4 篇 feng fuli
  • 4 篇 he xiangnan
  • 4 篇 rezende solange ...
  • 4 篇 calder jeff
  • 3 篇 hua xian-sheng
  • 3 篇 wang meng
  • 3 篇 zhao liang
  • 3 篇 liu yuzong
  • 3 篇 mei tao
  • 2 篇 budd jeremy m.
  • 2 篇 bilmes jeff
  • 2 篇 marcacini ricard...
  • 2 篇 dos santos brucc...
  • 2 篇 bertozzi andrea ...
  • 2 篇 trillos nicolas ...

语言

  • 94 篇 英文
  • 1 篇 中文
检索条件"主题词=Graph-based Learning"
96 条 记 录,以下是1-10 订阅
排序:
Label-Weighted graph-based learning for Semi-Supervised Classification Under Label Noise
收藏 引用
IEEE TRANSACTIONS ON BIG DATA 2024年 第1期10卷 55-65页
作者: Liang, Naiyao Yang, Zuyuan Chen, Junhang Li, Zhenni Xie, Shengli Guangdong Univ Technol Sch Automat Guangdong Key Lab IoT Informat Technol Guangzhou 510006 Peoples R China Minist Educ Key Lab iDetectin & Mfg IoT Guangzhou 510006 Peoples R China Guangdong Hong Kong Macao Joint Lab Smart Discrete Guangzhou 510006 Peoples R China
graph-based semi-supervised learning (GSSL) is a quite important technology due to its effectiveness in practice. Existing GSSL works often treat the given labels equally and ignore the unbalance importance of labels.... 详细信息
来源: 评论
ContrastLOS: A graph-based Deep learning Model With Contrastive Pre-Training for Improved ICU Length-of-Stay Prediction
收藏 引用
IEEE ACCESS 2025年 13卷 34132-34148页
作者: Fan, Guangrui Liu, Aixiang Zhang, Chao Taiyuan Univ Sci & Technol Dept Comp Sci & Technol Taiyuan 030024 Shanxi Peoples R China Shanxi Med Univ Fenyang Coll Dept Hlth Informat Management Fenyang 030001 Shanxi Peoples R China
Accurate prediction of intensive care unit (ICU) length of stay (LOS) is crucial for optimizing resource allocation and improving patient outcomes. We propose ContrastLOS, a novel graph-based deep learning model that ... 详细信息
来源: 评论
Utilizing Contrastive learning for graph-based Active learning of SAR Data  30
Utilizing Contrastive Learning for Graph-Based Active Learni...
收藏 引用
Conference on Algorithms for Synthetic Aperture Radar Imagery XXX
作者: Brown, Jason O'Neill, Riley Calder, Jeff Bertozzi, Andrea L. Univ Calif Los Angeles Dept Math 520 Portola Plaza Los Angeles CA 90095 USA Univ Minnesota Sch Math 538 Vincent Hall206 Church St SE Minneapolis MN 55455 USA
Automatic target recognition with synthetic aperture radar (SAR) data is a challenging image classification problem due to the difficulty in acquiring the large labeled training sets required for conventional deep lea... 详细信息
来源: 评论
graph-based Active learning for Semi-supervised Classification of SAR Data  29
Graph-based Active Learning for Semi-supervised Classificati...
收藏 引用
Conference on Algorithms for Synthetic Aperture Radar Imagery XXIX
作者: Miller, Kevin Mauro, Jack Setiadi, Jason Baca, Xoaquin Shi, Zhan Calder, Jeff Bertozzi, Andrea L. Univ Calif Los Angeles Dept Math 520 Portola Plaza Los Angeles CA 90095 USA Loyola Marymount Univ Dept Math 1 LMU Dr Los Angeles CA 90045 USA Univ Minnesota Sch Stat 313 Ford Hall224 Church St SE Minneapolis MN 55455 USA Harvey Mudd Coll Dept Comp Sci 201 Platt Blvd Claremont CA 91711 USA Univ Minnesota Sch Math 538 Vincent Hall206 Church St SE Minneapolis MN 55455 USA
We present a novel method for classification of Synthetic Aperture Radar (SAR) data by combining ideas from graph-based learning and neural network methods within an active learning framework. graph-based methods in m... 详细信息
来源: 评论
Is This Class Thread-Safe? Inferring Documentation using graph-based learning  18
Is This Class Thread-Safe? Inferring Documentation using Gra...
收藏 引用
33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)
作者: Habib, Andrew Pradel, Michael Tech Univ Darmstadt Dept Comp Sci Darmstadt Germany
Thread-safe classes are pervasive in concurrent, object-oriented software. However, many classes lack documentation regarding their safety guarantees under multi-threaded usage. This lack of documentation forces devel... 详细信息
来源: 评论
Efficient locality weighted sparse representation for graph-based learning
收藏 引用
KNOWLEDGE-based SYSTEMS 2017年 第Apr.1期121卷 129-141页
作者: Feng, Xiaodong Wu, Sen Zhou, Wenjun Quan, Min Univ Elect Sci & Technol China Sch Polit Sci & Publ Adm Chengdu 611731 Sichuan Peoples R China Univ Sci & Technol Beijing Donlinks Sch Econ & Management Beijing 100083 Peoples R China Univ Tennessee Business Analyt & Stat Knoxville TN 37996 USA
Constructing a graph to represent the structure among data objects plays a fundamental role in various data mining tasks with graph-based learning. Since traditional pairwise distance-based graph construction is sensi... 详细信息
来源: 评论
Adaptive edge weighting for graph-based learning algorithms
收藏 引用
MACHINE learning 2017年 第2期106卷 307-335页
作者: Karasuyama, Masayuki Mamitsuka, Hiroshi Nagoya Inst Technol Dept Engn Showa Ku Nagoya Aichi 4668555 Japan Kyoto Univ Inst Chem Res Bioinformat Ctr Uji Kyoto 6110011 Japan Aalto Univ Dept Comp Sci Espoo 02150 Finland
graph-based learning algorithms including label propagation and spectral clustering are known as the effective state-of-the-art algorithms for a variety of tasks in machine learning applications. Given input data, i.e... 详细信息
来源: 评论
A Three-Layered graph-based learning Approach for Remote Sensing Image Retrieval
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2016年 第10期54卷 6020-6034页
作者: Wang, Yuebin Zhang, Liqiang Tong, Xiaohua Zhang, Liang Zhang, Zhenxin Liu, Hao Xing, Xiaoyue Mathiopoulos, P. Takis Beijing Normal Univ State Key Lab Remote Sensing Sci Beijing 100875 Peoples R China Tongji Univ Sch Surveying & Geoinformat Shanghai 200092 Peoples R China Natl & Kapodistrian Univ Athens Dept Informat & Telecommun Athens 15784 Greece
With the emergence of huge volumes of high-resolution remote sensing images produced by all sorts of satellites and airborne sensors, processing and analysis of these images require effective retrieval techniques. To ... 详细信息
来源: 评论
graph-based ACTIVE learning: A NEW LOOK AT EXPECTED ERROR MINIMIZATION
GRAPH-BASED ACTIVE LEARNING: A NEW LOOK AT EXPECTED ERROR MI...
收藏 引用
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
作者: Jun, Kwang-Sung Nowak, Robert Univ Wisconsin Madison Wisconsin Inst Discovery Madison WI 53706 USA
In graph-based active learning, algorithms based on expected error minimization (EEM) have been popular and yield good empirical performance. The exact computation of EEM optimally balances exploration and exploitatio... 详细信息
来源: 评论
A graph-based approach for positive and unlabeled learning
收藏 引用
INFORMATION SCIENCES 2021年 580卷 655-672页
作者: Carnevali, Julio Cesar Rossi, Rafael Geraldeli Milios, Evangelos Lopes, Alneu de Andrade Univ Sao Paulo Inst Math & Comp Sci Sao Paulo SP Brazil Univ Fed Mato Grosso do Sul Campo Grande MS Brazil Dalhousie Univ Halifax NS Canada
Positive and Unlabeled learning (PUL) uses unlabeled documents and a few positive documents for retrieving a set of "interest" documents from a text collection. Usually, PUL approaches are based on the vecto... 详细信息
来源: 评论