咨询与建议

限定检索结果

文献类型

  • 58 篇 期刊文献
  • 35 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 96 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 89 篇 工学
    • 73 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 12 篇 信息与通信工程
    • 12 篇 软件工程
    • 8 篇 控制科学与工程
    • 5 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 环境科学与工程(可...
  • 16 篇 理学
    • 5 篇 数学
    • 5 篇 物理学
    • 3 篇 生物学
    • 2 篇 地球物理学
    • 1 篇 地理学
  • 12 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 10 篇 医学
    • 8 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 1 篇 农学

主题

  • 96 篇 graph-based lear...
  • 28 篇 semi-supervised ...
  • 8 篇 label propagatio...
  • 7 篇 deep learning
  • 7 篇 classification
  • 5 篇 optimization
  • 5 篇 active learning
  • 4 篇 transductive lea...
  • 4 篇 text classificat...
  • 4 篇 synthetic apertu...
  • 4 篇 machine learning
  • 4 篇 training
  • 3 篇 acoustic modelin...
  • 3 篇 graph convolutio...
  • 3 篇 k-associated gra...
  • 3 篇 contrastive lear...
  • 3 篇 multi-task learn...
  • 3 篇 graph neural net...
  • 3 篇 image retrieval
  • 3 篇 stock prediction

机构

  • 7 篇 univ washington ...
  • 3 篇 univ sci & techn...
  • 3 篇 univ minnesota s...
  • 3 篇 microsoft res as...
  • 3 篇 tsinghua univ pe...
  • 3 篇 univ calif los a...
  • 3 篇 natl univ singap...
  • 2 篇 fujitsu res & de...
  • 2 篇 univ sci & techn...
  • 2 篇 univ wisconsin d...
  • 2 篇 univ sao paulo i...
  • 1 篇 guangdong key la...
  • 1 篇 univ sci & techn...
  • 1 篇 university of sc...
  • 1 篇 xinjiang univ xi...
  • 1 篇 guangdong univ e...
  • 1 篇 univ fed mato gr...
  • 1 篇 hangzhou dianzi ...
  • 1 篇 guangdong polyte...
  • 1 篇 russian acad sci...

作者

  • 6 篇 rossi rafael ger...
  • 5 篇 chua tat-seng
  • 5 篇 lopes alneu de a...
  • 5 篇 kirchhoff katrin
  • 4 篇 zha zheng-jun
  • 4 篇 feng fuli
  • 4 篇 he xiangnan
  • 4 篇 rezende solange ...
  • 4 篇 calder jeff
  • 3 篇 hua xian-sheng
  • 3 篇 wang meng
  • 3 篇 zhao liang
  • 3 篇 liu yuzong
  • 3 篇 mei tao
  • 2 篇 budd jeremy m.
  • 2 篇 bilmes jeff
  • 2 篇 marcacini ricard...
  • 2 篇 dos santos brucc...
  • 2 篇 bertozzi andrea ...
  • 2 篇 trillos nicolas ...

语言

  • 94 篇 英文
  • 1 篇 中文
检索条件"主题词=Graph-based Learning"
96 条 记 录,以下是31-40 订阅
排序:
Open-world knowledge graph completion for unseen entities and relations via attentive feature aggregation
收藏 引用
INFORMATION SCIENCES 2022年 586卷 468-484页
作者: Oh, Byungkook Seo, Seungmin Hwang, Jimin Lee, Dongho Lee, Kyong-Ho Yonsei Univ Dept Comp Sci Seoul South Korea
Most of knowledge graph completion (KGC) models are designed for static KGs where entity and relation sets are fixed. These approaches are inherently transductive because they simply predict the plausibility of facts ... 详细信息
来源: 评论
On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine learning Research 2020年 第1期21卷 1022-1068页
作者: Nicolás García Trillos Zachary Kaplan Thabo Samakhoana Daniel Sanz-Alonso Department of Statistics University of Wisconsin-Madison Madison WI Division of Applied Mathematics Brown University Providence RI Department of Statistics University of Chicago Chicago IL
This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabel... 详细信息
来源: 评论
Deep Semi-supervised Label Propagation for SAR Image Classification  30
Deep Semi-supervised Label Propagation for SAR Image Classif...
收藏 引用
Conference on Algorithms for Synthetic Aperture Radar Imagery XXX
作者: Enwright, Joshua Hardiman-Mostow, Harris Calder, Jeff Bertozzi, Andrea Univ Calif Los Angeles Dept Math 520 Portola Plaza Los Angeles CA 90095 USA Univ Minnesota Sch Math 538 Vincent Hall206 Church St SE Minneapolis MN 55455 USA
Automatic target recognition with synthetic aperture radar (SAR) data is a challenging problem due to the complexity of the images and the difficulty in acquiring labels. Recent work(1) used a convolutional variationa... 详细信息
来源: 评论
Semi-supervised multi-label classification using an extended graph-based manifold regularization
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2022年 第2期8卷 1561-1577页
作者: Li, Ding Dick, Scott Univ Alberta Dept Elect & Comp Engn Edmonton AB T6G 1H9 Canada
graph-based algorithms are known to be effective approaches to semi-supervised learning. However, there has been relatively little work on extending these algorithms to the multi-label classification case. We derive a... 详细信息
来源: 评论
Significance of Emphasized Features for Good Representation on Deep Metric learning  19
Significance of Emphasized Features for Good Representation ...
收藏 引用
IEEE/ACIS 19th International Conference on Software Engineering Research, Management and Applications (SERA)
作者: Saeki, Shozo Kawahara, Minoru Aman, Hirohisa Ehime Univ Grad Sch Sci & Engn Matsuyama Ehime 7908577 Japan FINDEX Inc Business Strategy Dept 4-9-6 Sanbancho Matsuyama Ehime 7900003 Japan Ehime Univ Ctr Informat Technol Matsuyama Ehime 7908577 Japan
Deep metric learning (DML) learns the mapping, which maps into embedding space in which similar data is near and dissimilar data is far. Most DML frameworks apply L2 normalization to feature vectors, and these feature... 详细信息
来源: 评论
Capped l1-norm regularized least squares classification with label noise
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021年 第3期40卷 4051-4063页
作者: Yang, Zhi Gan, Haitao Li, Xuan Wu, Cong Hubei Univ Technol Sch Comp Sci Wuhan Peoples R China Hangzhou Dianzi Univ Sch Automat Hangzhou Peoples R China Wuhan Inst Technol Sch Elect & Informat Engn Wuhan Hubei Peoples R China
Since label noise can hurt the performance of supervised learning (SL), how to train a good classifier to deal with label noise is an emerging and meaningful topic in machine learning field. Although many related meth... 详细信息
来源: 评论
Progressive graph Convolutional Networks for Semi-Supervised Node Classification
收藏 引用
IEEE ACCESS 2021年 9卷 81957-81968页
作者: Heidari, Negar Iosifidis, Alexandros Aarhus Univ Dept Elect & Comp Engn DK-8000 Aarhus Denmark
graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification. Existing methods use a network structure defined by the user based on experimentation with... 详细信息
来源: 评论
graph Adversarial Training: Dynamically Regularizing based on graph Structure
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021年 第6期33卷 2493-2504页
作者: Feng, Fuli He, Xiangnan Tang, Jie Chua, Tat-Seng Natl Univ Singapore Comp 1 Sch Comp Comp Dr Singapore 117417 Singapore Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230026 Peoples R China Tsinghua Univ Beijing 100084 Peoples R China
Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (e.g... 详细信息
来源: 评论
Multiview Semi-Supervised learning Model for Image Classification
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2020年 第12期32卷 2389-2400页
作者: Nie, Feiping Tian, Lai Wang, Rong Li, Xuelong Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China Northwestern Polytech Univ Ctr OPT IMagery Anal & Learning OPTIMAL Xian 710072 Shaanxi Peoples R China
Semi-supervised learning models for multiview data are important in image classification tasks, since heterogeneous features are easy to obtain and semi-supervised schemes are economical and effective. To model the vi... 详细信息
来源: 评论
Stock ranking prediction using a graph aggregation network based on stock price and stock relationship information
收藏 引用
INFORMATION SCIENCES 2023年 第1期643卷
作者: Song, Guowei Zhao, Tianlong Wang, Suwei Wang, Hua Li, Xuemei Shandong Univ Sch Software Jinan 250101 Peoples R China Ludong Univ Sch Informat & Elect Engn Yantai 264025 Peoples R China
The volatility of stock prices makes it difficult to predict stock price trends correctly. This volatility is affected by many factors, including other stocks related to it. Stock prediction based on graph learning us... 详细信息
来源: 评论