咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 25 篇 工学
    • 24 篇 计算机科学与技术...
    • 11 篇 电气工程
    • 4 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 软件工程
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 1 篇 理学
    • 1 篇 地球物理学
  • 1 篇 农学
    • 1 篇 农业资源与环境
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 25 篇 graph-based embe...
  • 18 篇 semi-supervised ...
  • 10 篇 discriminant emb...
  • 8 篇 pattern recognit...
  • 6 篇 image categoriza...
  • 5 篇 soft labels
  • 5 篇 graph constructi...
  • 4 篇 feature extracti...
  • 4 篇 supervised learn...
  • 4 篇 out-of-sample ex...
  • 3 篇 manifold learnin...
  • 3 篇 classification
  • 2 篇 spectral graph c...
  • 2 篇 discriminative e...
  • 2 篇 graph convolutio...
  • 2 篇 elastic embeddin...
  • 2 篇 feature selectio...
  • 1 篇 deep architectur...
  • 1 篇 pattern classifi...
  • 1 篇 task analysis

机构

  • 11 篇 univ basque coun...
  • 9 篇 basque fdn sci i...
  • 7 篇 ikerbasque basqu...
  • 3 篇 univ bourgogne f...
  • 3 篇 univ basque coun...
  • 2 篇 univ basque coun...
  • 1 篇 ikerbasque fdn b...
  • 1 篇 vivocaz 8 b rue ...
  • 1 篇 ho chi minh city...
  • 1 篇 ikerbasque basqu...
  • 1 篇 univ bourgogne f...
  • 1 篇 lebanese univ la...
  • 1 篇 ikerbasque basqu...
  • 1 篇 lebanese univ do...
  • 1 篇 rochester inst t...
  • 1 篇 univ bourgogne f...
  • 1 篇 univ basque coun...
  • 1 篇 univ basque coun...
  • 1 篇 ubfc cnrs le2i b...
  • 1 篇 ikerbasque basqu...

作者

  • 13 篇 dornaika fadi
  • 9 篇 dornaika f.
  • 6 篇 el traboulsi y.
  • 5 篇 zhu ruifeng
  • 5 篇 ruichek yassine
  • 3 篇 baradaaji abdull...
  • 2 篇 el traboulsi you...
  • 2 篇 baradaaji a.
  • 2 篇 bosaghzadeh alir...
  • 2 篇 assoum a.
  • 1 篇 gouspillou phili...
  • 1 篇 zhu r.
  • 1 篇 dornaika e.
  • 1 篇 dorado-munoz lei...
  • 1 篇 weng l.
  • 1 篇 abel marie-helen...
  • 1 篇 ruichek y.
  • 1 篇 le ngoc luyen
  • 1 篇 messinger david ...
  • 1 篇 moujahid abdelma...

语言

  • 25 篇 英文
检索条件"主题词=Graph-based embedding"
25 条 记 录,以下是1-10 订阅
排序:
Learning a discriminant graph-based embedding with feature selection for image categorization
收藏 引用
NEURAL NETWORKS 2019年 111卷 35-46页
作者: Zhu, Ruifeng Dornaika, Fadi Ruichek, Yassine Univ Bourgogne Franche Comte CNRS Lab Elect Informat & Image LE2i Belfort France Univ Basque Country UPV EHU Fac Comp Sci Leioa Spain Ikerbasque Basque Fdn Sci Bilbao Spain
graph-based embedding methods are very useful for reducing the dimension of high-dimensional data and for extracting their relevant features. In this paper, we introduce a novel nonlinear method called Flexible Discri... 详细信息
来源: 评论
Joint graph based embedding and feature weighting for image classification
收藏 引用
PATTERN RECOGNITION 2019年 93卷 458-469页
作者: Zhu, Ruifeng Dornaika, Fadi Ruichek, Yassine Univ Bourgogne Franche Comte CNRS Lab Elect Informat & Image LE2i Belfort France Univ Basque Country UPV EHU Fac Comp Sci San Sebastian Spain Ikerbasque Basque Fdn Sci Bilbao Spain
Recently, several inductive and flexible nonlinear data projection methods for graph-based semi supervised learning were proposed. These state-of-the art techniques have a good performance. However, they have not take... 详细信息
来源: 评论
Joint graph based embedding and Feature Weighting for Image Classification
Joint Graph Based Embedding and Feature Weighting for Image ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhu, Ruifeng Dornaika, Fadi Ruichek, Yassine Univ Bourgogne Franche Comte CNRS Lab Elect Informat & Image LE2I Belfort France Univ Basque Country Fac Comp Sci San Sebastian Spain Basque Fdn Sci Ikerbasque Bilbao Spain
The graph-based embedding is an effective and useful method in reducing the dimension and extracting relevant data. This paper introduces a framework for classifying high dimensional data via a joint graph-based embed... 详细信息
来源: 评论
Deep, Flexible Data embedding with graph-based Feature Propagation for Semi-supervised Classification
收藏 引用
COGNITIVE COMPUTATION 2023年 第1期15卷 1-12页
作者: Dornaika, Fadi Ho Chi Minh City Open Univ 97 Vo Van TanDist 3 Ho Chi Minh City 70000 Vietnam
graph-based data representation has recently received much attention in the fields of machine learning and cognitive computation. Deep architectures and the semi-supervised learning paradigm are very closely related t... 详细信息
来源: 评论
Elastic embedding through graph Convolution-based Regression for Semi-supervised Classification
收藏 引用
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 2021年 第4期15卷 56-56页
作者: Dornaika, F. Univ Basque Country UPV EHU Manuel Lardizabal 1 San Sebastian 20018 Spain IKERBASQUE Fdn Bilbao Spain
This article introduces a scheme for semi-supervised learning by estimating a flexible non-linear data representation that exploits Spectral graph Convolutions structure. Structured data are exploited in order to dete... 详细信息
来源: 评论
Joint Label Propagation, graph and Latent Subspace Estimation for Semi-supervised Classification
收藏 引用
COGNITIVE COMPUTATION 2024年 第3期16卷 827-840页
作者: Dornaika, Fadi Baradaaji, Abdullah Univ Basque Country UPV EHU San Sebastian Spain Ikerbasque Basque Fdn Sci Bilbao Spain
Obtaining labeled images and samples is a very expensive process and can require intensive labor. At the same time, there are often not enough labeled samples to train an effective classifier. graph-based semi-supervi... 详细信息
来源: 评论
Joint Label Inference and Discriminant embedding
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022年 第9期33卷 4413-4423页
作者: Dornaika, Fadi Baradaaji, Abdullah El Traboulsi, Youssof Henan Univ Henan Key Lab Big Data Anal & Proc Kaifeng 475001 Peoples R China Univ Basque Country Dept Comp Sci & Artificial Intelligence San Sebastian 20018 Spain Ikerbasque Basque Fdn Sci Bilbao 48009 Spain Lebanese Int Univ Dept Comp Sci Tripoli Lebanon
graph-based learning in semisupervised models provides an effective tool for modeling big data sets in high-dimensional spaces. It has been useful for propagating a small set of initial labels to a large set of unlabe... 详细信息
来源: 评论
A unified semi-supervised model with joint estimation of graph, soft labels and latent subspace
收藏 引用
NEURAL NETWORKS 2023年 第1期166卷 248-259页
作者: Dornaika, Fadi Baradaaji, Abdullah Ho Chi Minh City Open Univ Ho Chi Minh City Vietnam Univ Basque Country UPV EHU San Sebastian Spain
Since manually labeling images is expensive and labor intensive, in practice we often do not have enough labeled images to train an effective classifier for the new image classification tasks. The graph-based SSL meth... 详细信息
来源: 评论
Combining embedding-based and Semantic-based Models for Post-Hoc Explanations in Recommender Systems
Combining Embedding-Based and Semantic-Based Models for Post...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Le, Ngoc Luyen Abel, Marie-Helene Gouspillou, Philippe Cs 60319 CompiègneCedex 60203 France Vivocaz 8 B Rue de la Gare Mercin-et-Vaux02200 France
In today's data-rich environment, recommender systems play a crucial role in decision support systems. They provide to users personalized recommendations and explanations about these recommendations. embedding-bas... 详细信息
来源: 评论
Joint sparse graph and flexible embedding for graph-based semi-supervised learning
收藏 引用
NEURAL NETWORKS 2019年 114卷 91-95页
作者: Dornaika, F. El Traboulsi, Y. Univ Basque Country UPV EHU San Sebastian Spain Basque Fdn Sci Ikerbasque Bilbao Spain
This letter introduces a framework for graph-based semi-supervised learning by estimating a flexible non-linear projection and its linear regression model. Unlike existing works, the proposed framework jointly estimat... 详细信息
来源: 评论