咨询与建议

限定检索结果

文献类型

  • 15 篇 期刊文献
  • 14 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 31 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 28 篇 工学
    • 22 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 5 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 系统科学
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 31 篇 graph-structured...
  • 6 篇 graph neural net...
  • 2 篇 graph convolutio...
  • 2 篇 keyword search
  • 2 篇 data mining
  • 2 篇 feature extracti...
  • 2 篇 substructure sim...
  • 2 篇 privacy-assured
  • 2 篇 privacy
  • 1 篇 alzheimer's dise...
  • 1 篇 graph neural net...
  • 1 篇 information syst...
  • 1 篇 matched signal d...
  • 1 篇 business process...
  • 1 篇 representation l...
  • 1 篇 fault diagnosis
  • 1 篇 clustering
  • 1 篇 hyperbolic space
  • 1 篇 selectivity esti...
  • 1 篇 graph query

机构

  • 2 篇 beijing univ pos...
  • 1 篇 tech univ wien i...
  • 1 篇 software compete...
  • 1 篇 ajou univ dept i...
  • 1 篇 chinese acad sci...
  • 1 篇 beihang univ sch...
  • 1 篇 univ macau dept ...
  • 1 篇 massachusetts ge...
  • 1 篇 free univ bozen ...
  • 1 篇 sci sorbonne uni...
  • 1 篇 natl univ singap...
  • 1 篇 natl univ singap...
  • 1 篇 univ munich muni...
  • 1 篇 univ technol syd...
  • 1 篇 bielefeld univ a...
  • 1 篇 southern univ sc...
  • 1 篇 bielefeld univ b...
  • 1 篇 tu wien austria
  • 1 篇 simon fraser uni...
  • 1 篇 puc chile santia...

作者

  • 2 篇 xiong gang
  • 2 篇 yang fangchun
  • 2 篇 ortiz magdalena
  • 2 篇 zhang yingguang
  • 2 篇 wang yulong
  • 2 篇 simkus mantas
  • 2 篇 chen weifeng
  • 2 篇 su sen
  • 1 篇 ni wei
  • 1 篇 廖雨果
  • 1 篇 xiao xiangqu
  • 1 篇 hao xiulan
  • 1 篇 van rest oskar
  • 1 篇 sanaullah
  • 1 篇 李国良
  • 1 篇 wong pak kin
  • 1 篇 li xin
  • 1 篇 zhang lei
  • 1 篇 reutter juan l.
  • 1 篇 kueng josef

语言

  • 29 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Graph-structured data"
31 条 记 录,以下是11-20 订阅
排序:
OGT: optimize graph then training GNNs for node classification
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第24期34卷 22209-22222页
作者: Wei, Quanmin Wang, Jinyan Hu, Jun Li, Xianxian Yi, Tong Guangxi Normal Univ Guangxi Key Lab Multisource Informat Min & Secur Guilin 541004 Guangxi Peoples R China Guangxi Normal Univ Sch Comp Sci & Engn Guilin 541004 Guangxi Peoples R China
graph Neural Networks (GNNs) have shown excellent performance in graph-related tasks and have arisen widespread attention. However, most existing works on GNNs mainly focus on proposing a novel GNN model or modifying ... 详细信息
来源: 评论
An Effective Keyword Search Method for graph-structured data Using Extended Answer Structure
An Effective Keyword Search Method for Graph-Structured Data...
收藏 引用
13th International Conference on Computational Science and Its Applications (ICCSA)
作者: Park, Chang-Sup Dongduk Womens Univ Seoul South Korea
This paper proposes an effective approach to ranked keyword search over graph-structured data which is getting much attraction in various applications. To provide more effective search results than the previous approa... 详细信息
来源: 评论
Streamlined Training of GCN for Node Classification with Automatic Loss Function and Optimizer Selection  1
收藏 引用
24th International Conference on Engineering Applications of Neural Networks (EANN)
作者: Sanaullah Koravuna, Shamini Rueckert, Ulrich Jungeblut, Thorsten Bielefeld Univ Appl Sci Bielefeld Germany Bielefeld Univ Bielefeld Germany
graph Neural Networks (GNNs) are specialized neural networks that operate on graph-structured data, utilizing the connections between nodes to learn and process information. To achieve optimal performance, GNNs requir... 详细信息
来源: 评论
Generalizing graph Neural Network across graphs and Time  23
Generalizing Graph Neural Network across Graphs and Time
收藏 引用
16th International Conference on Web Search and data Mining
作者: Wen, Zhihao Singapore Management Univ Sch Comp & Informat Syst Singapore Singapore
graph-structured data widely exist in diverse real-world scenarios, analysis of these graphs can uncover valuable insights about their respective application domains. However, most previous works focused on learning n... 详细信息
来源: 评论
Construct New graphs using Information Bottleneck Against Property Inference Attacks
Construct New Graphs using Information Bottleneck Against Pr...
收藏 引用
IEEE International Conference on Communications (IEEE ICC)
作者: Zhang, Chenhan Tian, Zhiyi Yu, James J. Q. Yu, Shui Univ Technol Sydney Sch Comp Sci Sydney NSW Australia Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Peoples R China
graphs provide a unique representation of real-world data. However, recent studies found that inference attacks can extract private property information of graph data from trained graph neural networks (GNNs), which a... 详细信息
来源: 评论
Privacy-Assured Similarity Query over graph-structured data in Mobile Cloud
Privacy-Assured Similarity Query over Graph-Structured Data ...
收藏 引用
33rd IEEE International Conference on Distributed Computing Systems (ICDCS)
作者: Zhang, Yingguang Su, Sen Chen, Weifeng Wang, Yulong Xu, Peng Yang, Fangchun Beijing Univ Posts & Telecommun State Key Lab Networking & Switching Technol Beijing Peoples R China
In the emerging mobile cloud paradigm, more and more innovative social applications are provided. The data of these applications is usually represented by the graph structure. For effective data retrieval, it is a cru... 详细信息
来源: 评论
data-Efficient graph Learning
Data-Efficient Graph Learning
收藏 引用
作者: Ding, Kaize Arizona State University
学位级别:Ph.D., Doctor of Philosophy
graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevai... 详细信息
来源: 评论
Fast vertex-based graph convolutional neural network and its application to brain images
收藏 引用
NEUROCOMPUTING 2021年 434卷 1-10页
作者: Liu, Chaoqiang Ji, Hui Qiu, Anqi Natl Univ Singapore Dept Biomed Engn Singapore Singapore Natl Univ Singapore Smart Syst Inst Singapore Singapore Natl Univ Singapore 1 Inst Hlth Singapore Singapore Natl Univ Singapore Dept Math Singapore Singapore Johns Hopkins Univ Dept Biomed Engn Baltimore MD 21218 USA
This paper proposes a vertex-based graph convolutional neural network (vertex-CNN) for analyzing structured data on graphs. We represent graphs using semi-regular triangulated meshes in which each vertex has 6 connect... 详细信息
来源: 评论
Recgraph: graph Recovery Attack using Variational graph Autoencoders
RecGraph: Graph Recovery Attack using Variational Graph Auto...
收藏 引用
40th IEEE International Performance, Computing, and Communications Conference (IPCCC)
作者: Tian, Jing Liu, Chang Gou, Gaopeng Li, Zhen Xiong, Gang Guan, Yangyang Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China
graph-structured data contains a lot of sensitive information about individuals. In order to protect users' privacy, many anonymization mechanisms for graph-structured data are proposed. However, one common drawba... 详细信息
来源: 评论
Understanding and Resolving Performance Degradation in Deep graph Convolutional Networks  21
Understanding and Resolving Performance Degradation in Deep ...
收藏 引用
30th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Zhou, Kuangqi Dong, Yanfei Wang, Kaixin Lee, Wee Sun Hooi, Bryan Xu, Huan Feng, Jiashi Natl Univ Singapore Singapore Singapore PayPal Innovat Lab Singapore Singapore Alibaba Grp Hangzhou Peoples R China
A graph Convolutional Network (GCN) stacks several layers and in each layer performs a PROPagation operation (PROP) and a TRANsformation operation (TRAN) for learning node representations over graph-structured data. T... 详细信息
来源: 评论