当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node an...
详细信息
当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node and Edge Features,NE-graphsage)用于浏览器指纹追踪。首先以浏览器指纹为节点、指纹之间特征相似度为边构建图数据。其次对图神经网络中的graphsage算法进行改进使其不仅能关注节点特征,而且能捕获边缘信息并对边缘分类,从而识别指纹。最后将NE-graphsage算法与Eckersley算法、FPStalker算法和LSTM算法进行对比,验证NE-graphsage算法的识别效果。实验结果表明,NE-graphsage算法在准确率和追踪时长上均有不同程度的提升,最大追踪时长可达80天,相比其他3种算法性能更优,验证了NE-graphsage算法对浏览器指纹长期追踪的能力。
电力系统的安全稳定运行是保障国家能源安全和经济发展的关键,而这在很大程度上依赖于对电力物联设备故障的准确预测。当前,随着电力物联网技术的发展,大量的数据被采集,但这些数据的潜在价值尚未得到充分挖掘,这在一定程度上限制了故障预测的准确性,影响了电力系统的可靠运行。针对这一问题,该文提出了一种创新的基于graphsage(Graph Sample and Aggregate)算法的电力物联设备故障预测。该方法通过PowerGraph数据集,将电力物联设备故障场景细分为四类,利用graphsage模型的特性,深入学习和分析节点特征与边特征,从而实现对物联设备故障的有效预测。实验结果表明,该方法准确率达到97.5%,相较于其它传统方法,准确率提高了0.39%~6.21%,同时graphsage模型实现了快速训练。该方法为电力物联设备安全稳定运行提供重要决策支持,能够对动态和相互联系的复杂系统进行更精细的分析,并增强电力系统运营部门对潜在干扰的预见和应对能力。
暂无评论