咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 数学
  • 1 篇 工学
    • 1 篇 机械工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 交通运输工程
    • 1 篇 软件工程
  • 1 篇 医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 管理学
    • 1 篇 公共管理

主题

  • 1 篇 matrix completio...
  • 1 篇 gene similarity ...
  • 1 篇 unsupervised dee...
  • 1 篇 graphical attent...
  • 1 篇 feature represen...

机构

  • 1 篇 national univers...
  • 1 篇 national univers...

作者

  • 1 篇 mao guo
  • 1 篇 liu jie

语言

  • 1 篇 英文
检索条件"主题词=Graphical attention autoencoder"
1 条 记 录,以下是1-10 订阅
An unsupervised deep learning framework for gene regulatory network inference from single-cell expression data
An unsupervised deep learning framework for gene regulatory ...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Mao, Guo Liu, Jie National University of Defense Technology Science and Technology on Parallel and Distributed Processing Laboratory Changsha410073 China National University of Defense Technology Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Laboratory of Software Engineering for Complex System Changsha410073 China
Recent advances in single-cell RNA sequencing (scRNA-seq) technology provides unprecedented opportunities for reconstruction gene regulation networks (GRNs). At present, many different models have been proposed to inf... 详细信息
来源: 评论