The synchronous dataflow graph (SDFG) model is widely used today for modeling real-timeapplications in safety-critical application domains. Schedulability analysis techniques that are well understood within the real-...
详细信息
The synchronous dataflow graph (SDFG) model is widely used today for modeling real-timeapplications in safety-critical application domains. Schedulability analysis techniques that are well understood within the real-time scheduling community are applied to the analysis of recurrent real-time workloads that are represented using this model. An enhancement to the standard SDFG model is proposed, which supports the specification of a real-time latency constraint between a specified input and a specified output of an SDFG. A polynomial-time algorithm is derived for representing the computational requirement of each such enhanced SDFG task in terms of the notion of the demand bound function (dbf), which is widely used in real-time scheduling theory for characterizing computational requirements of recurrent processes represented by, e.g., the sporadic task model. By so doing, the extensive dbf-centered machinery that has been developed in real-time scheduling theory for the hard-real-time schedulability analysis of systems of recurrent tasks may be applied to the analysis of systems represented using the SDFG model as well. The applicability of this approach is illustrated by applying prior results from real-time scheduling theory to construct an exact preemptive uniprocessor schedulability test for collections of independent recurrent processes that are each represented using the enhanced SDFG model.
Many embedded multi-core systems incorporate both dataflowapplications with timing constraints and traditional real-timeapplications. Applying real-time scheduling techniques on such systems provides real-time guara...
详细信息
ISBN:
(纸本)9781479984909
Many embedded multi-core systems incorporate both dataflowapplications with timing constraints and traditional real-timeapplications. Applying real-time scheduling techniques on such systems provides real-time guarantees that all running applications will execute safely without violating their deadlines. However, to apply traditional real-time scheduling techniques on such mixed systems, a unified model to represent both types of applications running on the system is required. Several earlier works have addressed this problem and solutions have been proposed that address acyclic graphs, implicit-deadline models or are able to extract timing parameters considering specific scheduling algorithms. In this paper, we present an algorithm for extracting real-time parameters (offsets, deadlines and periods) that are independent of the schedulability analysis, other applications running in the system, and the specific platform. The proposed algorithm: 1) enables applying traditional real-time schedulers and analysis techniques on cyclic or acyclic Homogeneous Synchronous dataflow (HSDF) applications with periodic sources, 2) captures overlapping iterations, which is a main characteristic of the execution of dataflowapplications, 3) provides a method to assign offsets and individual deadlines for HSDF actors, and 4) is compatible with widely used deadline assignment techniques, such as NORM and PURE. The paper proves the correctness of the proposed algorithm through formal proofs and examples.
暂无评论