咨询与建议

限定检索结果

文献类型

  • 26 篇 会议
  • 19 篇 期刊文献

馆藏范围

  • 45 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 44 篇 工学
    • 41 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 6 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 交通运输工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 4 篇 理学
    • 3 篇 物理学
    • 1 篇 生物学
  • 4 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 3 篇 文学
    • 3 篇 外国语言文学

主题

  • 45 篇 hierarchical tex...
  • 5 篇 natural language...
  • 4 篇 machine learning
  • 3 篇 text classificat...
  • 3 篇 large language m...
  • 3 篇 web taxonomy
  • 2 篇 multi-label clas...
  • 2 篇 support vector m...
  • 2 篇 language models
  • 2 篇 information gain
  • 2 篇 feature selectio...
  • 2 篇 text mining
  • 2 篇 boosting
  • 2 篇 prompt tuning
  • 2 篇 category discrim...
  • 1 篇 graph neural net...
  • 1 篇 label semantic m...
  • 1 篇 latent dirichlet...
  • 1 篇 knowledge incorp...
  • 1 篇 representation l...

机构

  • 2 篇 east china univ ...
  • 2 篇 wuhan univ comp ...
  • 2 篇 peoples publ sec...
  • 2 篇 nanjing audit un...
  • 1 篇 commun univ chin...
  • 1 篇 ccse beihang uni...
  • 1 篇 univ paris 06 f-...
  • 1 篇 hangzhou dianzi ...
  • 1 篇 seoul natl univ ...
  • 1 篇 chinese acad sci...
  • 1 篇 penn state univ ...
  • 1 篇 univ chinese aca...
  • 1 篇 commun univ chin...
  • 1 篇 yanshan univ sch...
  • 1 篇 cuc new media in...
  • 1 篇 qilu univ techno...
  • 1 篇 korea adv inst s...
  • 1 篇 hong kong univ s...
  • 1 篇 korea inst sci &...
  • 1 篇 univ illinois ur...

作者

  • 3 篇 oh heung-seon
  • 2 篇 shen huawei
  • 2 篇 tan hai
  • 2 篇 qin sijun
  • 2 篇 yin dechun
  • 2 篇 shen yinghan
  • 2 篇 kumar ashish
  • 2 篇 song yangqiu
  • 2 篇 yan yu
  • 2 篇 he yanxiang
  • 2 篇 li yubin
  • 2 篇 shen fanfan
  • 2 篇 zhang jun
  • 2 篇 myaeng sung-hyon
  • 1 篇 zhao jiangjiang
  • 1 篇 hong yu
  • 1 篇 peng hao
  • 1 篇 zhang xuejie
  • 1 篇 yang qiang
  • 1 篇 duan ruixue

语言

  • 45 篇 英文
检索条件"主题词=Hierarchical Text Classification"
45 条 记 录,以下是1-10 订阅
排序:
HeteroHTC: Enhancing hierarchical text classification via Heterogeneity Encoding of Label Hierarchy
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 271卷
作者: Song, Junru Chen, Tianlei Yang, Yang Wang, Feifei Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Shanghai 200240 Peoples R China Renmin Univ China Ctr Appl Stat Beijing 100872 Peoples R China Renmin Univ China Sch Stat Beijing 100872 Peoples R China Peking Univ Sch Comp Sci Beijing 100072 Peoples R China
hierarchical text classification (HTC) is a challenging subtask of multi-label text classification, where labels are organized into a pre-defined hierarchy. Recent works primarily encode documents and labels separatel... 详细信息
来源: 评论
Disentangled feature graph for hierarchical text classification
收藏 引用
INFORMATION PROCESSING & MANAGEMENT 2025年 第3期62卷
作者: Liu, Renyuan Zhang, Xuejie Wang, Jin Zhou, Xiaobing Yunnan Univ Sch Informat Sci & Engn Kunming 650500 Yunnan Peoples R China
Effectively utilizing the hierarchical relationship among labels is the core of hierarchical text classification (HTC). Previous research on HTC has tended to enhance the dependencies between labels. However, they ove... 详细信息
来源: 评论
Leveraging Uncertainty for Depth-Aware hierarchical text classification
收藏 引用
Computers, Materials & Continua 2024年 第9期80卷 4111-4127页
作者: Zixuan Wu Ye Wang Lifeng Shen Feng Hu Hong Yu Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and TelecommunicationsChongqing400000China Division of Emerging Interdisciplinary Areas Hong Kong University of Science and TechnologyHong Kong999077China
hierarchical text classification(HTC)aims to match text to hierarchical *** methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to the correct pa... 详细信息
来源: 评论
Does the Order Matter? A Random Generative Way to Learn Label Hierarchy for hierarchical text classification
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2024年 32卷 276-285页
作者: Yan, Jingsong Li, Piji Chen, Haibin Zheng, Junhao Ma, Qianli South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing 211106 Peoples R China
hierarchical text classification (HTC) is an essential and challenging task due to the difficulty of modeling label hierarchy. Recent generative methods have achieved state-of-the-art performance by flattening the loc... 详细信息
来源: 评论
HLC: hierarchically-aware label correlation for hierarchical text classification
收藏 引用
APPLIED INTELLIGENCE 2024年 第2期54卷 1602-1618页
作者: Kumar, Ashish Toshinwal, Durga Indian Inst Technol Roorkee Dept Comp Sci & Engn Roorkee Uttrakahnd India
hierarchical text classification (HTC) leverages the hierarchical structure of labels to enhance text categorization. Existing methods use a combination of text and structure encoders to generate a composite represent... 详细信息
来源: 评论
hierarchical text classification with multi-label contrastive learning and KNN
收藏 引用
NEUROCOMPUTING 2024年 577卷
作者: Zhang, Jun Li, Yubin Shen, Fanfan He, Yueshun Tan, Hai He, Yanxiang East China Univ Technol Sch Informat Engn Nanchang 330013 Peoples R China Nanjing Audit Univ Sch Informat Engn Nanjing 211815 Peoples R China Wuhan Univ Comp Sch Wuhan 430072 Peoples R China
Given the complicated label hierarchy, hierarchical text classification (HTC) has emerged as a challenging subtask in the realm of multi -label text classification. Existing methods enhance the quality of text represe... 详细信息
来源: 评论
Adaptive micro- and macro-knowledge incorporation for hierarchical text classification
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 248卷
作者: Feng, Zijian Mao, Kezhi Zhou, Hanzhang Nanyang Technol Univ Interdisciplinary Grad Programme Singapore 639798 Singapore Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore Singapore ETH Ctr Future Resilient Syst Programme CREATE campus Singapore 138602 Singapore
hierarchical text classification (HTC) aims to classify a text into multiple categories organized in a hierarchical structure. The state-of-the-art HTC methods usually employ graph networks, where label graphs are con... 详细信息
来源: 评论
Hierarchy-Aware and Label Balanced Model for hierarchical text classification
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 300卷
作者: Zhang, Jun Li, Yubin Shen, Fanfan Xia, Chenxi Tan, Hai He, Yanxiang East China Univ Technol Sch Informat Engn Nanchang 330013 Peoples R China Nanjing Audit Univ Sch Informat Engn Nanjing 211815 Peoples R China Wuhan Univ Comp Sch Wuhan 430072 Peoples R China
hierarchical text classification, where labels can be modeled as a hierarchical structure, is a special multi-label text classification sub-task. Current methods mainly improve model performance by modeling label depe... 详细信息
来源: 评论
JumpLiteGCN: A Lightweight Approach to hierarchical text classification  13th
JumpLiteGCN: A Lightweight Approach to Hierarchical Text Cla...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Liu, Teng Liu, Xiangzhi Dong, Yunfeng Wu, Xiaoming Qilu Univ Technol Shandong Comp Sci Ctr Key Lab Comp Power Network & Informat Secur Minist EducNatl Supercomp Ctr JinanShandong Aca Jinan Peoples R China Shandong Fundamental Res Ctr Comp Sci Shandong Prov Key Lab Comp Networks Jinan Peoples R China
hierarchical text classification poses a significant challenge in natural language processing due to its intricate label hierarchy. Existing text classification methods often face dual constraints of efficiency and pe... 详细信息
来源: 评论
GACaps-HTC: graph attention capsule network for hierarchical text classification
收藏 引用
APPLIED INTELLIGENCE 2023年 第17期53卷 20577-20594页
作者: Bang, Jinhyun Park, Jonghun Park, Jonghyuk Seoul Natl Univ Dept Ind Engn 1 Gwanak ro Seoul 08826 South Korea Seoul Natl Univ Inst Ind Syst Innovat 1 Gwanak ro Seoul 08826 South Korea Kookmin Univ Dept AI Big Data & Management 77 Jungnung ro Seoul 02707 South Korea
hierarchical text classification has been receiving increasing attention due to its vast range of applications in real-world natural language processing tasks. While previous approaches have focused on effectively exp... 详细信息
来源: 评论