咨询与建议

限定检索结果

文献类型

  • 26 篇 会议
  • 19 篇 期刊文献

馆藏范围

  • 45 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 44 篇 工学
    • 41 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 6 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 交通运输工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 4 篇 理学
    • 3 篇 物理学
    • 1 篇 生物学
  • 4 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 3 篇 文学
    • 3 篇 外国语言文学

主题

  • 45 篇 hierarchical tex...
  • 5 篇 natural language...
  • 4 篇 machine learning
  • 3 篇 text classificat...
  • 3 篇 large language m...
  • 3 篇 web taxonomy
  • 2 篇 multi-label clas...
  • 2 篇 support vector m...
  • 2 篇 language models
  • 2 篇 information gain
  • 2 篇 feature selectio...
  • 2 篇 text mining
  • 2 篇 boosting
  • 2 篇 prompt tuning
  • 2 篇 category discrim...
  • 1 篇 graph neural net...
  • 1 篇 label semantic m...
  • 1 篇 latent dirichlet...
  • 1 篇 knowledge incorp...
  • 1 篇 representation l...

机构

  • 2 篇 east china univ ...
  • 2 篇 wuhan univ comp ...
  • 2 篇 peoples publ sec...
  • 2 篇 nanjing audit un...
  • 1 篇 commun univ chin...
  • 1 篇 ccse beihang uni...
  • 1 篇 univ paris 06 f-...
  • 1 篇 hangzhou dianzi ...
  • 1 篇 seoul natl univ ...
  • 1 篇 chinese acad sci...
  • 1 篇 penn state univ ...
  • 1 篇 univ chinese aca...
  • 1 篇 commun univ chin...
  • 1 篇 yanshan univ sch...
  • 1 篇 cuc new media in...
  • 1 篇 qilu univ techno...
  • 1 篇 korea adv inst s...
  • 1 篇 hong kong univ s...
  • 1 篇 korea inst sci &...
  • 1 篇 univ illinois ur...

作者

  • 3 篇 oh heung-seon
  • 2 篇 shen huawei
  • 2 篇 tan hai
  • 2 篇 qin sijun
  • 2 篇 yin dechun
  • 2 篇 shen yinghan
  • 2 篇 kumar ashish
  • 2 篇 song yangqiu
  • 2 篇 yan yu
  • 2 篇 he yanxiang
  • 2 篇 li yubin
  • 2 篇 shen fanfan
  • 2 篇 zhang jun
  • 2 篇 myaeng sung-hyon
  • 1 篇 zhao jiangjiang
  • 1 篇 hong yu
  • 1 篇 peng hao
  • 1 篇 zhang xuejie
  • 1 篇 yang qiang
  • 1 篇 duan ruixue

语言

  • 45 篇 英文
检索条件"主题词=Hierarchical Text Classification"
45 条 记 录,以下是31-40 订阅
排序:
External methods to address limitations of using global information on the narrow-down approach for hierarchical text classification
收藏 引用
JOURNAL OF INFORMATION SCIENCE 2014年 第5期40卷 688-708页
作者: Oh, Heung-Seon Jung, Yuchul Korea Inst Sci & Technol Informat Taejon 305806 South Korea
Classifying documents to a large-scale web taxonomy is a challenging research problem because of a large number of categories and associated documents in the taxonomy. The state-of-the-art solution known as the narrow... 详细信息
来源: 评论
hierarchical text classification based on LDA and Domain Ontology
Hierarchical Text Classification based on LDA and Domain Ont...
收藏 引用
2nd International Conference on Information Technology and Management Innovation (ICITMI 2013)
作者: An, Wei Liu, Qihua Wuhan Univ Sch Informat Management Wuhan 430072 Peoples R China Jiangxi Univ Finance & Econ Sch Informat Technol Nanchang Jiangxi Peoples R China
This paper combines domain ontology and LDA model to propose a new method of hierarchical web text classification. Experimental results show that the method has good performance with high recall rate and accuracy rate.
来源: 评论
Multi-Granular text classification with Minimal Supervision  24
Multi-Granular Text Classification with Minimal Supervision
收藏 引用
17th ACM International Conference on Web Search and Data Mining (WSDM)
作者: Zhang, Yunyi Univ Illinois Urbana IL 61801 USA
Our society has been immersed with massive unstructured text data, posing great challenges for people to fetch needed data, digest critical information, and derive actionable knowledge. Such needs necessitate the deve... 详细信息
来源: 评论
Label-Guided Graphormer for Hierarchy text classification  32nd
Label-Guided Graphormer for Hierarchy Text Classification
收藏 引用
32nd International Conference on Artificial Neural Networks (ICANN)
作者: Li, Song Huo, Jingjing Xu, Wenqiang Zheng, Maozong Zhang, Kezun Chen, Hong Lin, Xuan AntGrp 556 Xixi Rd Hangzhou Peoples R China
hierarchical text classification (HTC), a subtask of multilabel classification, remains a challenging problem due to its complex label topology hierarchy. Although various methods have been proposed for modeling hiera... 详细信息
来源: 评论
Zero-Shot Taxonomy Mapping for Document classification  23
Zero-Shot Taxonomy Mapping for Document Classification
收藏 引用
38th Annual ACM Symposium on Applied Computing (ACM SAC)
作者: Bongiovanni, Lorenzo Bruno, Luca Dominici, Fabrizio Rizzo, Giuseppe LINKS Fdn Turin 1 Italy
classification of documents according to a custom internal hierarchical taxonomy is a common problem for many organizations that deal with textual data. Approaches aimed to address this challenge are, for the vast maj... 详细信息
来源: 评论
LH-Mix: Local Hierarchy Correlation Guided Mixup over hierarchical Prompt Tuning  25
LH-Mix: Local Hierarchy Correlation Guided Mixup over Hierar...
收藏 引用
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1
作者: Fanshuang Kong Richong Zhang Ziqiao Wang CCSE Beihang University Beijing China Tongji University Shanghai China
hierarchical text classification (HTC) aims to assign one or more labels in the hierarchy for each text. Many methods represent this structure as a global hierarchy, leading to redundant graph structures. To address t... 详细信息
来源: 评论
An Empirical Comparative Study on Two Large-Scale hierarchical text classification Approaches
收藏 引用
International Journal of Computer Processing of Languages 2011年 第4期23卷 309-325页
作者: JIAN ZHANG HAI ZHAO LIQING ZHANG BAO-LIANG LU Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiaotong University Shanghai 200240 China MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Shanghai Jiaotong University 800 Dongchuan Rd. Shanghai 200240 China Department of Computer Science Virginia Tech Blacksburg VA 24061 USA
Patent classification is a large scale hierarchical text classification (LSHTC) task. Though comprehensive comparisons, either learning algorithms or feature selection strategies, have been fully made in the text cate... 详细信息
来源: 评论
An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition
收藏 引用
BMC BIOINFORMATICS 2015年 第1期16卷 1-28页
作者: Tsatsaronis, George Balikas, Georgios Malakasiotis, Prodromos Partalas, Ioannis Zschunke, Matthias Alvers, Michael R. Weissenborn, Dirk Krithara, Anastasia Petridis, Sergios Polychronopoulos, Dimitris Almirantis, Yannis Pavlopoulos, John Baskiotis, Nicolas Gallinari, Patrick Artieres, Thierry Ngomo, Axel-Cyrille Ngonga Heino, Norman Gaussier, Eric Barrio-Alvers, Liliana Schroeder, Michael Androutsopoulos, Ion Paliouras, Georgios Tech Univ Dresden Biotechnol Ctr D-01307 Dresden Germany Transinsight GmbH D-01307 Dresden Germany NCSR Demokritos Athens 60228 Greece Athens Univ Econ & Business Athens 10434 Greece Univ Paris 06 F-75005 Paris France Univ Leipzig D-04109 Leipzig Germany Univ Grenoble 1 F-38041 St Martin Dheres France
Background: This article provides an overview of the first BIOASQ challenge, a competition on large-scale biomedical semantic indexing and question answering (QA), which took place between March and September 2013. BI... 详细信息
来源: 评论
hierarchical text classification Incremental Learning
收藏 引用
16th International Conference on Neural Information Processing (ICONIP 2009)
作者: Song, Shengli Qiao, Xiaofei Chen, Ping Xidian Univ Inst Software Engn Xian 710071 Peoples R China
To classify large-scale text corpora, an incremental learning method for hierarchical text classification is proposed. Based on the deep analysis of virtual classification tree based hierarchical text classification, ... 详细信息
来源: 评论
Geocoding textual Documents Through a Hierarchy of Linear Classifiers  17th
Geocoding Textual Documents Through a Hierarchy of Linear Cl...
收藏 引用
17th Portuguese Conference on Artificial Intelligence (EPIA)
作者: Melo, Fernando Martins, Bruno Univ Lisbon Inst Super Tecn P-1699 Lisbon Portugal Univ Lisbon INESC ID P-1699 Lisbon Portugal
In this paper, we empirically evaluate an automated technique, based on a hierarchical representation for the Earth's surface and leveraging linear classifiers, for assigning geospatial coordinates to previously u... 详细信息
来源: 评论