咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 工学
    • 3 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 软件工程
  • 3 篇 理学
    • 3 篇 数学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 6 篇 hierarchical alt...
  • 3 篇 nonnegative matr...
  • 2 篇 dimensionality r...
  • 2 篇 global convergen...
  • 1 篇 distributed algo...
  • 1 篇 nonnegative tens...
  • 1 篇 average consensu...
  • 1 篇 distributed nonn...
  • 1 篇 multilinear feat...
  • 1 篇 orthogonal nonne...
  • 1 篇 random projectio...
  • 1 篇 randomized appro...
  • 1 篇 mapreduce paradi...
  • 1 篇 distributed nonn...
  • 1 篇 multiagent syste...
  • 1 篇 randomized nmf
  • 1 篇 geometric nonneg...
  • 1 篇 augmented lagran...

机构

  • 2 篇 okayama univ oka...
  • 1 篇 okayama univ gra...
  • 1 篇 wroclaw univ sci...
  • 1 篇 wroclaw univ sci...
  • 1 篇 college of mathe...

作者

  • 3 篇 migita tsuyoshi
  • 3 篇 takahashi norika...
  • 2 篇 fonal krzysztof
  • 2 篇 zdunek rafal
  • 1 篇 fang-fang xu
  • 1 篇 yong-yong chen
  • 1 篇 hayashi keiju
  • 1 篇 masuda takao
  • 1 篇 sano takehiro

语言

  • 6 篇 英文
检索条件"主题词=Hierarchical alternating least squares algorithm"
6 条 记 录,以下是1-10 订阅
排序:
Randomized algorithms for Orthogonal Nonnegative Matrix Factorization
收藏 引用
Journal of the Operations Research Society of China 2023年 第2期11卷 327-345页
作者: Yong-Yong Chen Fang-Fang Xu College of Mathematics and Systems Science Shandong University of Science and TechnologyQingdao 266590ShandongChina
Orthogonal nonnegative matrix factorization(ONMF)is widely used in blind image separation problem,document classification,and human face *** model of ONMF can be efficiently solved by the alternating direction method ... 详细信息
来源: 评论
A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill's global convergence
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2022年 第3期84卷 755-781页
作者: Sano, Takehiro Migita, Tsuyoshi Takahashi, Norikazu Okayama Univ Grad Sch Nat Sci & Technol Kita Ku 3-1-1 Tsushima Naka Okayama 7008530 Japan
Nonnegative Matrix Factorization (NMF) has attracted a great deal of attention as an effective technique for dimensionality reduction of large-scale nonnegative data. Given a nonnegative matrix, NMF aims to obtain two... 详细信息
来源: 评论
Distributed HALS algorithm for NMF based on Simple Average Consensus algorithm  8
Distributed HALS Algorithm for NMF based on Simple Average C...
收藏 引用
IEEE International Conference on Progress in Informatics and Computing (IEEE PIC)
作者: Hayashi, Keiju Migita, Tsuyoshi Takahashi, Norikazu Okayama Univ Okayama Japan
Nonnegative Matrix Factorization (NMF) is an efficient dimensionality reduction method for nonnegative data. Recently, a distributed algorithm has been proposed for multiple agents in a network to execute the hierarch... 详细信息
来源: 评论
An algorithm for Randomized Nonnegative Matrix Factorization and Its Global Convergence
An Algorithm for Randomized Nonnegative Matrix Factorization...
收藏 引用
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Masuda, Takao Migita, Tsuyoshi Takahashi, Norikazu Okayama Univ Okayama Japan
Nonnegative Matrix Factorization (NMF) is to decompose a given nonnegative matrix into two nonnegative factor matrices. Recently, randomized NMF has been proposed as an approach to fast NMF of large nonnegative matric... 详细信息
来源: 评论
Distributed geometric nonnegative matrix factorization and hierarchical alternating least squares-based nonnegative tensor factorization with the MapReduce paradigm
收藏 引用
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE 2018年 第17期30卷
作者: Zdunek, Rafal Fonal, Krzysztof Wroclaw Univ Sci & Technol Dept Elect Wybrzeze Wyspianskiego 27 PL-50370 Wroclaw Poland
Nonnegative matrix factorization and its multilinear extension known as nonnegative tensor factorization are commonly used methods in machine learning and data analysis for feature extraction and dimensionality reduct... 详细信息
来源: 评论
Randomized Nonnegative Tensor Factorization for Feature Extraction from High-dimensional Signals  25
Randomized Nonnegative Tensor Factorization for Feature Extr...
收藏 引用
25th International Conference on Systems, Signals and Image Processing (IWSSIP)
作者: Zdunek, Rafal Fonal, Krzysztof Wroclaw Univ Sci & Technol Fac Elect Wybrzeze Wyspianskiego 27 PL-50370 Wroclaw Poland
Tensor decomposition methods are well-known tools for multilinear feature extraction from multi-way arrays with many important applications in signal processing and machine learning. Nonnegative Tensor Factorization (... 详细信息
来源: 评论