咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 理学
    • 8 篇 数学
  • 4 篇 工学
    • 4 篇 计算机科学与技术...

主题

  • 8 篇 high-dimensional...
  • 3 篇 compressive sens...
  • 2 篇 compressed sensi...
  • 2 篇 function learnin...
  • 2 篇 ridge functions
  • 2 篇 sublinear-time a...
  • 2 篇 sparse approxima...
  • 1 篇 sobol' indices
  • 1 篇 rank-1 lattices
  • 1 篇 sparse fourier t...
  • 1 篇 dimension reduct...
  • 1 篇 ridge approximat...
  • 1 篇 tikhonov regular...
  • 1 篇 dantzig selector
  • 1 篇 elliptic partial...
  • 1 篇 noisy measuremen...
  • 1 篇 spectral methods
  • 1 篇 chernoff bounds ...
  • 1 篇 stability bounds...
  • 1 篇 active subspace

机构

  • 2 篇 michigan state u...
  • 2 篇 michigan state u...
  • 1 篇 univ grenoble al...
  • 1 篇 inst polytech pa...
  • 1 篇 tech univ munich...
  • 1 篇 fraunhofer inst ...
  • 1 篇 univ colorado bo...
  • 1 篇 tech univ munich...
  • 1 篇 michigan state u...
  • 1 篇 fraunhofer ctr m...
  • 1 篇 tech univ berlin...
  • 1 篇 tech univ chemni...
  • 1 篇 austrian acad sc...
  • 1 篇 michigan state u...
  • 1 篇 simula res lab m...
  • 1 篇 ut austin oden i...
  • 1 篇 univ genoa malga...
  • 1 篇 charles univ pra...
  • 1 篇 mit 77 massachus...
  • 1 篇 univ texas austi...

作者

  • 2 篇 iwen mark
  • 2 篇 vybiral jan
  • 2 篇 fornasier massim...
  • 2 篇 choi bosu
  • 1 篇 gross craig
  • 1 篇 volkmer toni
  • 1 篇 naumova valeriya
  • 1 篇 prieur clementin...
  • 1 篇 zahm olivier
  • 1 篇 marzouk youssef ...
  • 1 篇 schnass karin
  • 1 篇 krahmer felix
  • 1 篇 mayer sebastian
  • 1 篇 iwen mark a.
  • 1 篇 constantine paul...
  • 1 篇 doerr benjamin
  • 1 篇 de vito ernesto
  • 1 篇 kolleck anton

语言

  • 6 篇 英文
  • 2 篇 其他
检索条件"主题词=High-dimensional function approximation"
8 条 记 录,以下是1-10 订阅
排序:
Sparse Harmonic Transforms: A New Class of Sublinear-Time Algorithms for Learning functions of Many Variables
收藏 引用
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS 2021年 第2期21卷 275-329页
作者: Choi, Bosu Iwen, Mark A. Krahmer, Felix UT Austin Oden Inst Computat Engn & Sci Austin TX 78712 USA Michigan State Univ Dept Math E Lansing MI 48824 USA Michigan State Univ Dept Computat Math Sci & Engn CMSE E Lansing MI 48824 USA Tech Univ Munich Dept Math Munich Germany
In this paper we develop fast and memory efficient numerical methods for learning functions of many variables that admit sparse representations in terms of general bounded orthonormal tensor product bases. Such functi... 详细信息
来源: 评论
GRADIENT-BASED DIMENSION REDUCTION OF MULTIVARIATE VECTOR-VALUED functionS
收藏 引用
SIAM JOURNAL ON SCIENTIFIC COMPUTING 2020年 第1期42卷 A534-A558页
作者: Zahm, Olivier Constantine, Paul G. Prieur, Clementine Marzouk, Youssef M. Univ Grenoble Alpes Inria CNRS Grenoble INPInst EngnLJK F-38000 Grenoble France Univ Colorado Boulder CO 80309 USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
Multivariate functions encountered in high-dimensional uncertainty quantification problems often vary most strongly along a few dominant directions in the input parameter space. We propose a gradient-based method for ... 详细信息
来源: 评论
Sparse Spectral Methods for Solving high-dimensional and Multiscale Elliptic PDEs
收藏 引用
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS 2024年 第3期25卷 765-811页
作者: Gross, Craig Iwen, Mark Michigan State Univ Dept Math 619 Red Cedar Rd East E Lansing MI 48824 USA Michigan State Univ Dept Computat Math Sci & Engn 428 S Shaw Lane E Lansing MI 48824 USA
In his monograph Chebyshev and Fourier Spectral Methods, John Boyd claimed that, regarding Fourier spectral methods for solving differential equations, "[t]he virtues of the Fast Fourier Transform will continue t... 详细信息
来源: 评论
A machine learning approach to optimal Tikhonov regularization I: Affine manifolds
收藏 引用
ANALYSIS AND APPLICATIONS 2022年 第2期20卷 353-400页
作者: De Vito, Ernesto Fornasier, Massimo Naumova, Valeriya Univ Genoa DIMA Via Dodecaneso 35 I-16146 Genoa Italy Univ Genoa MaLGa Via Dodecaneso 35 I-16146 Genoa Italy Tech Univ Munich Fak Math Boltzmannstr 3 D-85748 Garching Germany Simula Res Lab Martin Linges Vei 25 N-1364 Fornebu Norway
Despite a variety of available techniques, such as discrepancy principle, generalized cross validation, and balancing principle, the issue of the proper regularization parameter choice for inverse problems still remai... 详细信息
来源: 评论
Learning functions of Few Arbitrary Linear Parameters in high Dimensions
收藏 引用
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS 2012年 第2期12卷 229-262页
作者: Fornasier, Massimo Schnass, Karin Vybiral, Jan Tech Univ Munich Fac Math D-85748 Garching Germany Austrian Acad Sci Johann Radon Inst Computat & Appl Math A-4040 Linz Austria
Let us assume that f is a continuous function defined on the unit ball of R-d, of the form f(x) = g(Ax), where A is a k x d matrix and g is a function of k variables for k << d. We are given a budget m is an ele... 详细信息
来源: 评论
Sparse harmonic transforms II: bests-term approximation guarantees for bounded orthonormal product bases in sublinear-time
收藏 引用
NUMERISCHE MATHEMATIK 2021年 第2期148卷 293-362页
作者: Choi, Bosu Iwen, Mark Volkmer, Toni Univ Texas Austin Oden Inst Computat Engn & Sci Austin TX 78712 USA Michigan State Univ Dept Math E Lansing MI 48824 USA Michigan State Univ Dept Computat Math Sci & Engn CMSE E Lansing MI 48824 USA Tech Univ Chemnitz Fac Math Chemnitz Germany
In this paper we develop a sublinear-time compressive sensing algorithm for approximating functions of many variables which are compressible in a given Bounded Orthonormal Product Basis (BOPB). The resulting algorithm... 详细信息
来源: 评论
On some aspects of approximation of ridge functions
收藏 引用
JOURNAL OF approximation THEORY 2015年 194卷 35-61页
作者: Kolleck, Anton Vybiral, Jan Tech Univ Berlin Math Inst D-10623 Berlin Germany Charles Univ Prague Dept Math Anal Prague 18600 8 Czech Republic
We present effective algorithms for uniform approximation of multivariate functions satisfying some prescribed inner structure. We extend, in several directions, the analysis of recovery of ridge functions f (x) = g (... 详细信息
来源: 评论
The recovery of ridge functions on the hypercube suffers from the curse of dimensionality
收藏 引用
JOURNAL OF COMPLEXITY 2021年 63卷 101521-101521页
作者: Doerr, Benjamin Mayer, Sebastian Inst Polytech Paris Lab Informat LIX Ecole Polytech CNRS Palaiseau France Fraunhofer Ctr Machine Learning D-53754 St Augustin Germany Fraunhofer Inst Algorithms & Sci Comp SCAI D-53754 St Augustin Germany
A multivariate ridge function is a function of the form f (x) = g(a(T) x), where g is univariate and a is an element of R-d. We show that the recovery of an unknown ridge function defined on the hypercube [-1, 1](d) w... 详细信息
来源: 评论