咨询与建议

限定检索结果

文献类型

  • 26 篇 期刊文献
  • 16 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 41 篇 工学
    • 24 篇 计算机科学与技术...
    • 15 篇 电气工程
    • 6 篇 控制科学与工程
    • 5 篇 石油与天然气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 地质资源与地质工...
    • 2 篇 机械工程
    • 2 篇 信息与通信工程
    • 2 篇 水利工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 软件工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 矿业工程
  • 7 篇 理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 1 篇 物理学
    • 1 篇 大气科学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 43 篇 hybrid learning ...
  • 5 篇 adaptive neuro-f...
  • 4 篇 genetic algorith...
  • 3 篇 fuzzy logic
  • 3 篇 stability analys...
  • 3 篇 fuzzy systems
  • 3 篇 identification
  • 3 篇 particle swarm o...
  • 3 篇 anfis
  • 3 篇 sugeno-fuzzy mod...
  • 3 篇 artificial neura...
  • 2 篇 learning rate
  • 2 篇 gradient based
  • 2 篇 subtractive clus...
  • 2 篇 neural networks
  • 2 篇 fuzzy neural net...
  • 2 篇 neuro-fuzzy syst...
  • 2 篇 membership funct...
  • 2 篇 lyapunov theory
  • 2 篇 chaotic time ser...

机构

  • 2 篇 semnan univ fac ...
  • 2 篇 kn toosi univ te...
  • 1 篇 yonsei univ dept...
  • 1 篇 gorgan univ agr ...
  • 1 篇 naval aeronaut e...
  • 1 篇 kiet dept appl s...
  • 1 篇 tongji univ mini...
  • 1 篇 iiitm abv gwalio...
  • 1 篇 mnit dept elect ...
  • 1 篇 isfahan univ tec...
  • 1 篇 shanghai jiao to...
  • 1 篇 qingdao univ tec...
  • 1 篇 power engn co he...
  • 1 篇 shanghai jiao to...
  • 1 篇 minist educ engn...
  • 1 篇 yazd univ coll n...
  • 1 篇 department of el...
  • 1 篇 beijing lab smar...
  • 1 篇 tijuana inst tec...
  • 1 篇 hunan univ coll ...

作者

  • 3 篇 chowdhury s.
  • 3 篇 chowdhury s. p.
  • 3 篇 teshnehlab moham...
  • 3 篇 sedigh ali khaki
  • 3 篇 shoorehdeli mahd...
  • 3 篇 mitra p.
  • 2 篇 jaafar jafreezal
  • 2 篇 hassan saima
  • 2 篇 khosravi abbas
  • 1 篇 du bin
  • 1 篇 ajjarapu venkata...
  • 1 篇 khanesar m. ahma...
  • 1 篇 qingyang wu
  • 1 篇 li xiaomin
  • 1 篇 li peng
  • 1 篇 maryam zekri
  • 1 篇 gupta shivam
  • 1 篇 li chunshien
  • 1 篇 cheng jiujun
  • 1 篇 meng xi

语言

  • 41 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Hybrid learning algorithm"
43 条 记 录,以下是11-20 订阅
排序:
A hybrid learning algorithm for the Optimization of Convolutional Neural Network  13th
A Hybrid Learning Algorithm for the Optimization of Convolut...
收藏 引用
13th International Conference on Intelligent Computing (ICIC)
作者: Zang, Di Ding, Jianping Cheng, Jiujun Zhang, Dongdong Tang, Keshuang Tongji Univ Dept Comp Sci & Technol Shanghai Peoples R China Tongji Univ Minist Educ Key Lab Embedded Syst & Serv Comp Shanghai Peoples R China Tongji Univ Dept Transportat Informat & Control Engn Shanghai Peoples R China
The stochastic gradient descend (SGD) is a prevalence algorithm used to optimize Convolutional Neural Network (CNN) by many researchers. However, it has several disadvantages such as occurring in local optimum and van... 详细信息
来源: 评论
Intelligent AVR and PSS with Adaptive hybrid learning algorithm
Intelligent AVR and PSS with Adaptive Hybrid Learning Algori...
收藏 引用
General Meeting of the IEEE-Power-and-Energy-Society
作者: Mitra, P. Chowdhury, S. P. Chowdhury, S. Pal, K. Crossley, P. A. IEEE Electrical Engineering Department Jadavpur University Kolkata India Electrical Engineering Women's Polytechnic Kolkata India Department of Electrical Engineering University of Manchester United Kingdom
The paper presents a step-by-step design methodology of an Adaptive Neuro-Fuzzy Inference System (ANFIS) based Automatic Voltage Regulator (AVR) and Power System Stabilizer (PSS) and also demonstrates its performance ... 详细信息
来源: 评论
A self-organizing fuzzy neural network with hybrid learning algorithm for nonlinear system modeling
收藏 引用
INFORMATION SCIENCES 2023年 第1期642卷
作者: Meng, Xi Zhang, Yin Quan, Limin Qiao, Junfei Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Beijing Lab Smart Environm Protect Beijing 100124 Peoples R China Minist Educ Engn Res Ctr Intelligence Percept & Autonomous Con Beijing 100124 Peoples R China Qingdao Univ Technol Sch Informat & Control Engn Qingdao 266520 Peoples R China Beijing Univ Technol Beijing 100124 Peoples R China
Fuzzy neural networks (FNNs) integrating the advantages of fuzzy systems and neural networks are useful techniques for nonlinear system modeling. However, how to determine the structure and parameters to guarantee sat... 详细信息
来源: 评论
Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods
收藏 引用
APPLIED SOFT COMPUTING 2009年 第2期9卷 833-850页
作者: Shoorehdeli, Mahdi Aliyari Teshnehlab, Mohammad Sedigh, Ali Khaki Khanesar, M. Ahmadieh KN Toosi Univ Technol Tehran Iran
This paper proposes a novel hybrid learning algorithm with stable learning laws for Adaptive Network based Fuzzy Inference System (ANFIS) as a system identifier and studies the stability of this algorithm. The new hyb... 详细信息
来源: 评论
Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter
收藏 引用
FUZZY SETS AND SYSTEMS 2009年 第7期160卷 922-948页
作者: Shoorehdeli, Mahdi Aliyari Teshnehlab, Mohammad Sedigh, Ali Khaki KN Toosi Univ Technol Fac Elect Engn ISLAB Tehran Iran
This paper proposes a novel hybrid learning algorithm with stable learning laws for Adaptive Network-based Fuzzy Inference System (ANFIS) as a system identifier. The proposed hybrid learning algorithm is based on the ... 详细信息
来源: 评论
Identification using ANFIS with intelligent hybrid stable learning algorithm approaches
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2009年 第2期18卷 157-174页
作者: Shoorehdeli, Mahdi Aliyari Teshnehlab, Mohammad Sedigh, Ali Khaki KN Toosi Univ Technol Tehran Iran
This paper suggests novel hybrid learning algorithm with stable learning laws for adaptive network based fuzzy inference system (ANFIS) as a system identifier and studies the stability of this algorithm. The new hybri... 详细信息
来源: 评论
A Novel Parameter Identification Approach via hybrid learning for Aggregate Load Modeling
收藏 引用
IEEE TRANSACTIONS ON POWER SYSTEMS 2009年 第3期24卷 1145-1154页
作者: Bai, Hua Zhang, Pei Ajjarapu, Venkataramana Iowa State Univ Dept Elect & Comp Engn Ames IA 50010 USA EPRI Palo Alto CA 94304 USA
Parameter identification is the key technology in measurement-based load modeling. A hybrid learning algorithm is proposed to identify parameters for the aggregate load model (ZIP augmented with induction motor). The ... 详细信息
来源: 评论
hybrid fuzzy modeling of wastewater quality with artificial intelligence learning
收藏 引用
ENVIRONMENTAL ENGINEERING SCIENCE 2008年 第6期25卷 941-950页
作者: Yoo, ChangKyoo Hwang, Sun-Jin Moon, Il Kyung Hee Univ Coll Environm & Appl Chem Green Energy Ctr Yongin 446701 Gyeonggi Do South Korea Yonsei Univ Dept Chem Engn Seoul 120479 South Korea
The wastewater treatment process (WWTP) is highly nonlinear and complex, and its dynamics are difficult to model. Process data obtained under multiple operating conditions that have a number of operating models and ch... 详细信息
来源: 评论
Artificial Bee Colony Optimization of Interval Type-2 Fuzzy Extreme learning System for Chaotic Data  3
Artificial Bee Colony Optimization of Interval Type-2 Fuzzy ...
收藏 引用
3rd International Conference on Computer and Information Sciences (ICCOINS)
作者: Hassan, Saima Jaafar, Jafreezal Khanesar, Mojtaba A. Khosravi, Abbas Univ Teknol PETRONAS Dept Comp & Informat Sci Tronoh Perak Malaysia Kohat Univ Sci & Technol Inst Informat Technol Kohat Kpk Pakistan Semnan Univ Fac Elect & Comp Engn Semnan Iran Deakin Univ Ctr Intelligent Syst Res Bldg KCWaurn Ponds Campus Geelong Vic 3217 Australia
The major challenge in the design of Interval type-2 fuzzy logic system (IT2FLS) is to determine the optimal parameters for their antecedent and consequent parts. This paper propose a novel hybrid learning algorithm f... 详细信息
来源: 评论
Internal Model Control based on Extreme learning ANFIS for Nonlinear Application
Internal Model Control based on Extreme Learning ANFIS for N...
收藏 引用
IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES)
作者: Shihabudheen, K., V Pillai, G. N. Indian Inst Technol Roorkee Dept Elect Engn Roorkee Uttar Pradesh India
Extreme learning Adaptive Neuro Fuzzy Inference System (ELANFIS) is a new learning machine which combines the learning capabilities of neural networks and the explicit knowledge of the fuzzy systems as in the case of ... 详细信息
来源: 评论