咨询与建议

限定检索结果

文献类型

  • 125 篇 期刊文献
  • 67 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 193 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 131 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 24 篇 信息与通信工程
    • 19 篇 软件工程
    • 18 篇 控制科学与工程
    • 11 篇 机械工程
    • 10 篇 石油与天然气工程
    • 7 篇 动力工程及工程热...
    • 7 篇 电子科学与技术(可...
    • 7 篇 环境科学与工程(可...
    • 6 篇 生物医学工程(可授...
    • 4 篇 土木工程
    • 4 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 交通运输工程
  • 38 篇 理学
    • 11 篇 数学
    • 9 篇 物理学
    • 9 篇 生物学
    • 6 篇 地球物理学
    • 4 篇 化学
  • 29 篇 管理学
    • 24 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 3 篇 图书情报与档案管...
  • 18 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 193 篇 hyper-parameter ...
  • 32 篇 deep learning
  • 31 篇 machine learning
  • 19 篇 bayesian optimiz...
  • 10 篇 optimization
  • 9 篇 genetic algorith...
  • 8 篇 feature extracti...
  • 7 篇 feature selectio...
  • 7 篇 training
  • 6 篇 grid search
  • 6 篇 federated learni...
  • 6 篇 data models
  • 6 篇 convolutional ne...
  • 6 篇 convolutional ne...
  • 5 篇 random search
  • 5 篇 transfer learnin...
  • 5 篇 particle swarm o...
  • 5 篇 meta-learning
  • 4 篇 reinforcement le...
  • 4 篇 deep neural netw...

机构

  • 3 篇 zhejiang univ te...
  • 2 篇 univ birmingham ...
  • 2 篇 beijing univ pos...
  • 2 篇 chungbuk natl un...
  • 2 篇 dalian univ tech...
  • 2 篇 chinese univ hon...
  • 2 篇 beijing univ pos...
  • 2 篇 carnegie mellon ...
  • 2 篇 jeju natl univ b...
  • 2 篇 univ victoria de...
  • 2 篇 univ british col...
  • 1 篇 department of el...
  • 1 篇 nanjing univ pos...
  • 1 篇 univ sci & techn...
  • 1 篇 faculty of compu...
  • 1 篇 univ austral sed...
  • 1 篇 amrita vishwa vi...
  • 1 篇 deakin univ sch ...
  • 1 篇 asia univ inst i...
  • 1 篇 fraunhofer itwm ...

作者

  • 4 篇 yin feng
  • 4 篇 jiao licheng
  • 4 篇 li yangyang
  • 3 篇 kundroo majid
  • 3 篇 chandrashekaran ...
  • 3 篇 yedida rahul
  • 3 篇 lu gao
  • 3 篇 hoos holger h.
  • 3 篇 kim taehong
  • 3 篇 liu guangyuan
  • 3 篇 menzies tim
  • 3 篇 mu pan
  • 2 篇 zeng shangzhi
  • 2 篇 akay bahriye
  • 2 篇 wang ran
  • 2 篇 jun zhang
  • 2 篇 bai cong
  • 2 篇 kus zeki
  • 2 篇 li yuqi
  • 2 篇 vukovic maja

语言

  • 179 篇 英文
  • 10 篇 其他
  • 3 篇 中文
检索条件"主题词=Hyper-parameter optimization"
193 条 记 录,以下是11-20 订阅
排序:
Native Support for Federated Learning hyper-parameter optimization in 6G Networks  25
Native Support for Federated Learning Hyper-Parameter Optimi...
收藏 引用
IEEE Wireless Communications and Networking Conference (IEEE WCNC)
作者: Khan, Mohammad Bariq An, Xueli Dressler, Falko Huawei Technol Munich Res Ctr AWTL Munich Germany Tech Univ Berlin Sch Elect Engn & Comp Sci Berlin Germany
6G mobile communication networks are envisioned to be AI-native, that is, the provision of AI services to users as well as the network itself would be one of the most essential aspect for its system architecture and d... 详细信息
来源: 评论
Towards Green AI by Reducing Training Effort of Recurrent Neural Networks Using hyper-parameter optimization with Dynamic Stopping Criteria  22
Towards Green AI by Reducing Training Effort of Recurrent Ne...
收藏 引用
22nd IEEE International Symposium on Intelligent Systems and Informatics, SISY 2024
作者: Podgorelec, Vili Fister, Iztok Vrbancic, Grega University of Maribor Intelligent Systems Laboratory Faculty of Electrical Engineering and Computer Science Slovenia
Neural networks have become a leading model in modern machine learning, able to model even the most complex data. For them to be properly trained, however, a lot of computational resources are required. With the carbo... 详细信息
来源: 评论
Improving the Multimodal Classification Performance of Spiking Neural Networks Through hyper-parameter optimization  38
Improving the Multimodal Classification Performance of Spiki...
收藏 引用
38th International Conference on Information Networking (ICOIN)
作者: Park, Jin Seon Hong, Choong Seon Kyung Hee Univ Dept Comp Sci & Engn Seoul 446701 South Korea
Spiking Neural Networks (SNNs) are computational models that emulate the spike-based communication found in biological neural networks. These models are increasingly recognized for their potential to process sensor da... 详细信息
来源: 评论
hyper-parameter optimization for Latent Spaces  1
收藏 引用
21st Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Veloso, Bruno Caroprese, Luciano Konig, Matthias Teixeira, Sonia Manco, Giuseppe Hoos, Holger H. Gama, Joao Portucalense Univ Porto Portugal Leiden Univ Leiden Netherlands Univ Porto Porto Portugal Univ British Columbia Vancouver BC Canada ICAR CNR Arcavacata Di Rende Italy LIAAD INESC TEC Porto Portugal
We present an online optimization method for time-evolving data streams that can automatically adapt the hyper-parameters of an embedding model. More specifically, we employ the Nelder-Mead algorithm, which uses a set... 详细信息
来源: 评论
hyper-parameter optimization for Deep Learning by Surrogate-based Model with Weighted Distance Exploration
Hyper-Parameter Optimization for Deep Learning by Surrogate-...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Li, Zhenhua Shoemaker, Christine A. Nanjing Univ Aeronaut & Astronaut Sch Comp Sci & Technol Nanjing Peoples R China Natl Univ Singapore Dept Ind Syst Engn Singapore Singapore
To improve deep neural net hyper-parameter optimization we develop a deterministic surrogate optimization algorithm as an efficient alternative to Bayesian optimization. A deterministic Radial Basis Function (RBF) sur... 详细信息
来源: 评论
Efficient Federated Learning with Adaptive Client-Side hyper-parameter optimization  43
Efficient Federated Learning with Adaptive Client-Side Hyper...
收藏 引用
43rd IEEE International Conference on Distributed Computing Systems (ICDCS)
作者: Kundroo, Majid Kim, Taehong Chungbuk Natl Univ Sch Informat & Commun Engn Cheongju South Korea
Federated Learning (FL) trains machine learning (ML) models with privacy protection. However, current FL algorithms use the same hyper-parameters for all clients regardless of their statistical or system heterogeneity... 详细信息
来源: 评论
hyper-parameter optimization of Classifiers, Using an Artificial Immune Network and Its Application to Software Bug Prediction
收藏 引用
IEEE ACCESS 2020年 8卷 20954-20964页
作者: Khan, Faiza Kanwal, Summrina Alamri, Sultan Mumtaz, Bushra Riphah Int Univ Fac Comp Islamabad 45211 Pakistan Saudi Elect Univ Dept Comp & Informat Riyadh 11673 Saudi Arabia
Software testing is an important task in software development activities, and it requires most of the resources, namely, time, cost and effort. To minimize this fatigue, software bug prediction (SBP) models are applie... 详细信息
来源: 评论
hyper-parameter optimization in classification: To-do or not-to-do
收藏 引用
PATTERN RECOGNITION 2020年 103卷 107245-107245页
作者: Ngoc Tran Schneider, Jean-Guy Weber, Ingo Qin, A. K. Swinburne Univ Technol Dept Comp Sci & Software Engn Hawthorn Vic 3122 Australia Deakin Univ Sch Informat Technol Geelong Vic Australia CSIRO Data61 Eveleigh NSW 2015 Australia Tech Univ Berlin Chair Software & Business Engn Berlin 10587 Germany Swinburne Univ Technol Hawthorn Vic Australia
hyper-parameter optimization is a process to find suitable hyper-parameters for predictive models. It typically incurs highly demanding computational costs due to the need of the time-consuming model training process ... 详细信息
来源: 评论
hyper-parameter optimization Using MARS Surrogate for Machine-Learning Algorithms
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2020年 第3期4卷 287-297页
作者: Li, Yangyang Liu, Guangyuan Lu, Gao Jiao, Licheng Marturi, Naresh Shang, Ronghua Xidian Univ Int Res Ctr Intelligent Percept & Computat Sch Artificial IntelligenceJoint Int Res Lab Int Minist EducKey Lab Intelligent Percept & Image U Xian 710071 Peoples R China Univ Birmingham Extreme Robot Lab Edgbaston B15 2TT England
Automatically searching for optimal hyper parameters is of crucial importance for applying machine learning algorithms in practice. However, there are concerns regarding the tradeoff between efficiency and effectivene... 详细信息
来源: 评论
Grid search with a weighted error function: hyper-parameter optimization for financial time series forecasting
收藏 引用
APPLIED SOFT COMPUTING 2024年 154卷
作者: Zhao, Yuan Zhang, Weiguo Liu, Xiufeng South China Univ Technol Sch Business Adm Guangzhou 510641 Peoples R China Guangzhou Financial Serv Innovat & Risk Management Guangzhou 510641 Peoples R China Shenzhen Univ Coll Management Shenzhen 518060 Peoples R China Tech Univ Denmark Dept Technol Management & Econ DK-2800 Lyngby Denmark
Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to tackle this task, but finding their optimal hyper -paramete... 详细信息
来源: 评论