咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 化学
  • 1 篇 工学
    • 1 篇 仪器科学与技术
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 石油与天然气工程
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 1 篇 hyperbasis activ...
  • 1 篇 matrix signals
  • 1 篇 combined learnin...

机构

  • 1 篇 kazimierz pulask...
  • 1 篇 kharkiv national...
  • 1 篇 research institu...

作者

  • 1 篇 dobrowolski maci...
  • 1 篇 sachenko anatoli...
  • 1 篇 chala olha
  • 1 篇 bodyanskiy yevge...

语言

  • 1 篇 其他
检索条件"主题词=HyperBasis Activation Functions"
1 条 记 录,以下是1-10 订阅
排序:
Matrix Hyper-Basis Function Neural Network and Its Online Learning  12
Matrix Hyper-Basis Function Neural Network and Its Online Le...
收藏 引用
12th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2023
作者: Chala, Olha Bodyanskiy, Yevgeniy Sachenko, Anatoliy Dobrowolski, MacIej Kharkiv National University of Radio Electronics Artificial Intelligence Department Kharkiv Ukraine Kazimierz Pulaski University of Technology and Humanities in Radom Informatics and Teleinformatics Department Poland Research Institute for Intelligent Computer Systems West Ukrainian National University Ternopil Ukraine
A matrix hyper-basis function neural network and a recurrent online algorithm for its training are proposed. The system aims to process not traditional signals in vector form but matrix ones describing the images of a... 详细信息
来源: 评论