咨询与建议

限定检索结果

文献类型

  • 66 篇 期刊文献
  • 20 篇 会议

馆藏范围

  • 86 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 工学
    • 56 篇 计算机科学与技术...
    • 19 篇 电气工程
    • 11 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 6 篇 软件工程
    • 3 篇 动力工程及工程热...
    • 3 篇 土木工程
    • 3 篇 石油与天然气工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
  • 14 篇 理学
    • 6 篇 数学
    • 5 篇 化学
    • 4 篇 物理学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 生物学
  • 11 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 4 篇 医学
    • 2 篇 临床医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 86 篇 hyperparameters ...
  • 18 篇 deep learning
  • 11 篇 machine learning
  • 8 篇 convolutional ne...
  • 7 篇 bayesian optimiz...
  • 6 篇 genetic algorith...
  • 6 篇 convolutional ne...
  • 5 篇 neural architect...
  • 5 篇 feature selectio...
  • 4 篇 transfer learnin...
  • 3 篇 support vector r...
  • 3 篇 gated recurrent ...
  • 3 篇 ensemble learnin...
  • 3 篇 lstm
  • 3 篇 automated machin...
  • 3 篇 support vector m...
  • 3 篇 neural networks
  • 3 篇 convolutional ne...
  • 3 篇 optimization
  • 3 篇 deep neural netw...

机构

  • 2 篇 univ sci & techn...
  • 2 篇 cairo univ fac c...
  • 2 篇 minia univ fac c...
  • 2 篇 univ milano bico...
  • 2 篇 univ elect sci &...
  • 2 篇 cairo univ fac c...
  • 2 篇 canadian int col...
  • 2 篇 south china univ...
  • 1 篇 ge healthcare il...
  • 1 篇 ganpat universit...
  • 1 篇 zalora
  • 1 篇 guangxi univ gua...
  • 1 篇 imt atlantique l...
  • 1 篇 univ belgrade fa...
  • 1 篇 shanghai univ el...
  • 1 篇 hanyang univ ans...
  • 1 篇 computer network...
  • 1 篇 king saud univ c...
  • 1 篇 max planck inst ...
  • 1 篇 national school ...

作者

  • 4 篇 hassanien aboul ...
  • 3 篇 ezzat dalia
  • 3 篇 archetti frances...
  • 3 篇 candelieri anton...
  • 2 篇 afzal muhammad k...
  • 2 篇 emam marwa m.
  • 2 篇 zhan zhi-hui
  • 2 篇 ali liaqat
  • 2 篇 sayed gehad isma...
  • 2 篇 hussain basharat
  • 2 篇 houssein essam h...
  • 2 篇 javeed ashir
  • 1 篇 claret s. p. ang...
  • 1 篇 bouneffa mourad
  • 1 篇 cui ping
  • 1 篇 rojas ignacio
  • 1 篇 correa dos santo...
  • 1 篇 kim byung-seo
  • 1 篇 li yao
  • 1 篇 el-ghazali talbi

语言

  • 83 篇 英文
  • 3 篇 其他
检索条件"主题词=Hyperparameters Optimization"
86 条 记 录,以下是1-10 订阅
排序:
Scaling Up Optuna: P2P Distributed hyperparameters optimization
收藏 引用
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE 2025年 第4-5期37卷
作者: Cudennec, Loic Minist Armed Forces Ministerial Agcy Def Artificial Intelligence AMIAD Bruz France
In machine learning (ML), hyperparameter optimization (HPO) is the process of choosing a tuple of values that ensures an efficient deployment and training of an AI model. In practice, HPO not only applies to ML tuning... 详细信息
来源: 评论
hyperparameters optimization of convolutional neural network based on local autonomous competition harmony search algorithm
收藏 引用
JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING 2023年 第4期10卷 1280-1297页
作者: Liu, Dongmei Ouyang, Haibin Li, Steven Zhang, Chunliang Zhan, Zhi-Hui Guangzhou Univ Sch Mech & Elect Engn Guangzhou 510006 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China RMIT Univ Grad Sch Business & Law Melbourne 3000 Australia
Because of the good performance of convolutional neural network (CNN), it has been extensively used in many fields, such as image, speech, text, etc. However, it is easily affected by hyperparameters. How to effective... 详细信息
来源: 评论
hyperparameters optimization for Federated Learning System: Speech Emotion Recognition Case Study  8
Hyperparameters Optimization for Federated Learning System: ...
收藏 引用
8th IEEE International Conference on Fog and Mobile Edge Computing (FMEC)
作者: Mishchenko, Kateryna Mohammadi, Samaneh Mohammadi, Mohammadreza Sinaei, Sima RISE Res Inst Sweden Stockholm Sweden
Context: Federated Learning (FL) has emerged as a promising, massively distributed way to train a joint deep model across numerous edge devices, ensuring user data privacy by retaining it on the device. In FL, Hyperpa... 详细信息
来源: 评论
A new hyperparameters optimization method for convolutional neural networks
收藏 引用
PATTERN RECOGNITION LETTERS 2019年 125卷 828-834页
作者: Cui, Hua Bai, Jie Yulin Normal Univ 1303 Jiaoyudong Rd Yulin 537000 Peoples R China Tongji Univ 1239 Siping Rd Shanghai 200092 Peoples R China
The use of convolutional neural networks involves hyperparameters optimization. Gaussian process based Bayesian optimization (GPEI) has proven to be an effective algorithm to optimize several hyperparameters. Then dee... 详细信息
来源: 评论
Efficient hyperparameters optimization through model-based reinforcement learning with experience exploiting and meta-learning
收藏 引用
SOFT COMPUTING 2023年 第13期27卷 8661-8678页
作者: Liu, Xiyuan Wu, Jia Chen, Senpeng Univ Elect Sci & Technol China Chengdu Peoples R China
Hyperparameter optimization plays a significant role in the overall performance of machine learning algorithms. However, the computational cost of algorithm evaluation can be extremely high for complex algorithm or la... 详细信息
来源: 评论
Surrogate-Assisted Hybrid-Model Estimation of Distribution Algorithm for Mixed-Variable hyperparameters optimization in Convolutional Neural Networks
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023年 第5期34卷 2338-2352页
作者: Li, Jian-Yu Zhan, Zhi-Hui Xu, Jin Kwong, Sam Zhang, Jun South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Pazhou Lab Guangzhou 510330 Peoples R China South China Univ Technol Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Peoples R China Tencent Inc WeChat Data Qual Team Shenzhen 518052 Peoples R China City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China Hanyang Univ Ansan 15588 South Korea Zhejiang Normal Univ Jinhua 321004 Zhejiang Peoples R China Chaoyang Univ Technol Taichung 413310 Taiwan
The performance of a convolutional neural network (CNN) heavily depends on its hyperparameters. However, finding a suitable hyperparameters configuration is difficult, challenging, and computationally expensive due to... 详细信息
来源: 评论
Theoretical Aspects in Penalty hyperparameters optimization
收藏 引用
MEDITERRANEAN JOURNAL OF MATHEMATICS 2023年 第6期20卷 1-13页
作者: Esposito, Flavia Selicato, Laura Sportelli, Caterina Univ Bari Aldo Moro Dept Math Via Orabona 4 I-70125 Bari Italy Univ Western Australia Dept Math & Stat 35 Stirling Highway Crawley WA 6009 Australia
Learning processes play an important role in enhancing understanding and analyzing real phenomena. Most of these methodologies revolve around solving penalized optimization problems. A significant challenge arises in ... 详细信息
来源: 评论
On the use of Metaheuristics in hyperparameters optimization of Gaussian Processes  19
On the use of Metaheuristics in Hyperparameters Optimization...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Palar, Pramudita Satria Zuhal, Lavi Rizki Shimoyama, Koji Inst Teknol Bandung Fac Mech & Aerosp Engn Bandung Indonesia Tohoku Univ Inst Fluid Sci Sendai Miyagi Japan
Due to difficulties such as multiple local optima and flat landscape, it is suggested to use global optimization techniques to discover the global optimum of the auxiliary optimization problem of finding good Gaussian... 详细信息
来源: 评论
A hyperparameters automatic optimization method of time graph convolution network model for traffic prediction
收藏 引用
WIRELESS NETWORKS 2021年 第7期27卷 4411-4419页
作者: Chen, Lei Bei, Lulu An, Yuan Zhang, Kailiang Cui, Ping Xuzhou Univ Technol Jiangsu Prov Key Lab Intelligent Ind Control Tech Xuzhou 221018 Jiangsu Peoples R China
Smart transportation is an essential component of the smart city. Traffic prediction is an important issue in smart transportation. The convolutional neural networks (GCN) are an effective approach for traffic predict... 详细信息
来源: 评论
Stall prediction model based on deep learning network in axial flow compressor
收藏 引用
CHINESE JOURNAL OF AERONAUTICS 2025年 第4期38卷 44-54页
作者: Deng, Yuyang Li, Jichao Liu, Jingyuan Peng, Feng Zhang, Hongwu Schoen, Marco P. Chinese Acad Sci Adv Gas Turbine Lab Inst Engn Thermophys Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Aeronaut & Astronaut Beijing 100049 Peoples R China Natl Key Lab Sci & Technol Adv Light duty Gas Turb Beijing 100049 Peoples R China Chinese Acad Sci Inst Engn Thermophys Key Lab Adv Energy & Power Beijing 100190 Peoples R China Jiangsu Univ Res Ctr Fluid Machinery Engn & Technol Zhenjiang 212000 Peoples R China Idaho State Univ Dept Mech Engn Pocatello ID 83209 USA
To predict stall and surge in advance that make the aero-engine compressor operate safely, a stall prediction model based on deep learning theory is established in the current study. The Long Short-Term Memory (LSTM) ... 详细信息
来源: 评论