咨询与建议

限定检索结果

文献类型

  • 187 篇 会议

馆藏范围

  • 187 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 187 篇 工学
    • 187 篇 计算机科学与技术...
    • 61 篇 软件工程
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 187 篇 image and video ...
  • 1 篇 computational ph...
  • 1 篇 stable diffusion
  • 1 篇 vision applicati...
  • 1 篇 low-level vision
  • 1 篇 vision + graphic...

机构

  • 7 篇 tencent ai lab p...
  • 7 篇 carnegie mellon ...
  • 7 篇 ant grp peoples ...
  • 7 篇 peng cheng lab p...
  • 6 篇 univ sci & techn...
  • 5 篇 shanghai ai lab ...
  • 5 篇 alibaba grp peop...
  • 5 篇 tsinghua univ pe...
  • 5 篇 nanyang technol ...
  • 4 篇 swiss fed inst t...
  • 4 篇 adobe res ca usa
  • 4 篇 natl univ singap...
  • 3 篇 hkust peoples r ...
  • 3 篇 google res mount...
  • 3 篇 hong kong polyte...
  • 3 篇 univ wisconsin m...
  • 3 篇 ucl england
  • 3 篇 bytedance people...
  • 3 篇 univ trento tren...
  • 3 篇 max planck inst ...

作者

  • 5 篇 shan ying
  • 5 篇 tulyakov sergey
  • 5 篇 zhang yong
  • 4 篇 lee hsin-ying
  • 4 篇 wang xuan
  • 4 篇 ren jian
  • 4 篇 sohn kihyuk
  • 3 篇 tang hao
  • 3 篇 rombach robin
  • 3 篇 shi humphrey
  • 3 篇 zhan fangneng
  • 3 篇 zhu jun-yan
  • 3 篇 feng jiashi
  • 3 篇 chang huiwen
  • 3 篇 zhang bo
  • 3 篇 lu shijian
  • 3 篇 fan yanbo
  • 3 篇 wu si
  • 3 篇 wong hau san
  • 3 篇 li xiaoyu

语言

  • 187 篇 英文
检索条件"主题词=Image and video synthesis and generation"
187 条 记 录,以下是1-10 订阅
排序:
TextCraftor: Your Text Encoder Can be image Quality Controller
TextCraftor: Your Text Encoder Can be Image Quality Controll...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Li, Yanyu Liu, Xian Kag, Anil Hu, Ju Idelbayev, Yerlan Sagar, Dhritiman Wang, Yanzhi Tulyakov, Sergey Ren, Jian Snap Inc Santa Monica CA 90405 USA Northeastern Univ Boston MA 02115 USA
Diffusion-based text-to-image generative models, e.g., Stable Diffusion, have revolutionized the field of content generation, enabling significant advancements in areas like image editing and video synthesis. Despite ... 详细信息
来源: 评论
Readout Guidance: Learning Control from Diffusion Features
Readout Guidance: Learning Control from Diffusion Features
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Luo, Grace Darrell, Trevor Wang, Oliver Goldman, Dan B. Holynski, Aleksander Google Res Mountain View CA 94043 USA Univ Calif Berkeley Berkeley CA 94720 USA
We present Readout Guidance, a method for controlling text-to-image diffusion models with learned signals. Readout Guidance uses readout heads, lightweight networks trained to extract signals from the features of a pr... 详细信息
来源: 评论
Rethinking the Objectives of Vector-Quantized Tokenizers for image synthesis
Rethinking the Objectives of Vector-Quantized Tokenizers for...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Gu, Yuchao Wang, Xintao Ge, Yixiao Shan, Ying Shou, Mike Zheng Natl Univ Singapore Show Lab Singapore Singapore Tencent PCG ARC Lab Shenzhen Peoples R China
Vector-Quantized (VQ-based) generative models usually consist of two basic components, i.e., VQ tokenizers and generative transformers. Prior research focuses on improving the reconstruction fidelity of VQ tokenizers ... 详细信息
来源: 评论
Your Student is Better Than Expected: Adaptive Teacher-Student Collaboration for Text-Conditional Diffusion Models
Your Student is Better Than Expected: Adaptive Teacher-Stude...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Starodubcev, Nikita Baranchuk, Dmitry Fedorov, Artem Babenko, Artem Yandex Res Moscow Russia
Knowledge distillation methods have recently shown to be a promising direction to speedup the synthesis of large-scale diffusion models by requiring only a few inference steps. While several powerful distillation meth... 详细信息
来源: 评论
StyleCineGAN: Landscape Cinemagraph generation using a Pre-trained StyleGAN
StyleCineGAN: Landscape Cinemagraph Generation using a Pre-t...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Choi, Jongwoo Seo, Kwanggyoon Ashtari, Amirsaman Noh, Junyong Korea Adv Inst Sci & Technol Visual Media Lab Daejeon South Korea
We propose a method that can generate cinemagraphs automatically from a still landscape image using a pre-trained StyleGAN. Inspired by the success of recent unconditional video generation, we leverage a powerful pre-... 详细信息
来源: 评论
videoSwap: Customized video Subject Swapping with Interactive Semantic Point Correspondence
VideoSwap: Customized Video Subject Swapping with Interactiv...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Gu, Yuchao Zhou, Yipin Wu, Bichen Yu, Licheng Liu, Jia-Wei Zhao, Rui Wu, Jay Zhangjie Zhang, David Junhao Shou, Mike Zheng Tang, Kevin Natl Univ Singapore Show Lab Singapore Singapore Meta GenAI Menlo Pk CA USA
Current diffusion-based video editing primarily focuses on structure-preserved editing by utilizing various dense correspondences to ensure temporal consistency and motion alignment. However, these approaches are ofte... 详细信息
来源: 评论
High-Fidelity Guided image synthesis with Latent Diffusion Models
High-Fidelity Guided Image Synthesis with Latent Diffusion M...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Singh, Jaskirat Gould, Stephen Zheng, Liang Australian Natl Univ Canberra ACT Australia Australian Ctr Robot Vis Brisbane Qld Australia
Controllable image synthesis with user scribbles has gained huge public interest with the recent advent of text-conditioned latent diffusion models. The user scribbles control the color composition while the text prom... 详细信息
来源: 评论
Inversion-based Style Transfer with Diffusion Models
Inversion-based Style Transfer with Diffusion Models
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zhang, Yuxin Huang, Nisha Tang, Fan Huang, Haibin Ma, Chongyang Dong, Weiming Xu, Changsheng Chinese Acad Sci Inst Automat MAIS Beijing Peoples R China UCAS Sch AI Beijing Peoples R China Chinese Acad Sci Inst Comp Technol Beijing Peoples R China Kuaishou Technol Beijing Peoples R China
The artistic style within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes, including semantic elements and object shap... 详细信息
来源: 评论
Catch Missing Details: image Reconstruction with Frequency Augmented Variational Autoencoder
Catch Missing Details: Image Reconstruction with Frequency A...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Lin, Xinmiao Li, Yikang Hsiao, Jenhao Ho, Chiuman Kong, Yu Rochester Inst Technol Rochester MN USA OPPO US Res Shenzhen Peoples R China Michigan State Univ E Lansing MI USA
The popular VQ-VAE models reconstruct images through learning a discrete codebook but suffer from a significant issue in the rapid quality degradation of image reconstruction as the compression rate rises. One major r... 详细信息
来源: 评论
GLeaD: Improving GANs with A Generator-Leading Task
GLeaD: Improving GANs with A Generator-Leading Task
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Bai, Qingyan Yang, Ceyuan Xu, Yinghao Liu, Xihui Yang, Yujiu Shen, Yujun Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Beijing Peoples R China Shanghai AI Lab Shanghai Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Univ Hong Kong Hong Kong Peoples R China Ant Grp Hangzhou Peoples R China
Generative adversarial network (GAN) is formulated as a two-player game between a generator (G) and a discriminator (D), where D is asked to differentiate whether an image comes from real data or is produced by G. Und... 详细信息
来源: 评论