咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 3 篇 variational auto...
  • 3 篇 importance weigh...
  • 1 篇 variational infe...
  • 1 篇 simex
  • 1 篇 doubly reparamet...
  • 1 篇 deep learning
  • 1 篇 adversarial vari...
  • 1 篇 item response th...
  • 1 篇 fully connected ...
  • 1 篇 latent variable ...
  • 1 篇 normalizing flow
  • 1 篇 generative model...
  • 1 篇 errorin-variable...
  • 1 篇 categorical fact...
  • 1 篇 artificial neura...
  • 1 篇 importance sampl...

机构

  • 1 篇 tsinghua univ ct...
  • 1 篇 harvard univ dep...
  • 1 篇 univ north carol...
  • 1 篇 univ autonoma ma...

作者

  • 1 篇 bauer daniel j.
  • 1 篇 liu jun s.
  • 1 篇 hu zhirui
  • 1 篇 ke zheng tracy
  • 1 篇 hernandez-lobato...
  • 1 篇 urban christophe...
  • 1 篇 gomez-sancho mar...

语言

  • 3 篇 英文
检索条件"主题词=Importance weighted autoencoder"
3 条 记 录,以下是1-10 订阅
排序:
Measurement Error Models: From Nonparametric Methods to Deep Neural Networks
收藏 引用
STATISTICAL SCIENCE 2022年 第4期37卷 473-493页
作者: Hu, Zhirui Ke, Zheng Tracy Liu, Jun S. Tsinghua Univ Ctr Stat Sci Beijing Peoples R China Harvard Univ Dept Stat Cambridge MA 02138 USA
The success of deep learning has inspired a lot of recent interests in exploiting neural network structures for statistical inference and learning. In this paper, we review some popular deep neural network structures ... 详细信息
来源: 评论
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis
收藏 引用
PSYCHOMETRIKA 2021年 第1期86卷 1-29页
作者: Urban, Christopher J. Bauer, Daniel J. Univ North Carolina Chapel Hill NC 27515 USA
Marginal maximum likelihood (MML) estimation is the preferred approach to fitting item response theory models in psychometrics due to the MML estimator's consistency, normality, and efficiency as the sample size t... 详细信息
来源: 评论
importance weighted Adversarial Variational Bayes  15th
Importance Weighted Adversarial Variational Bayes
收藏 引用
15th International Conference on Hybrid Artificial Intelligence Systems (HAIS)
作者: Gomez-Sancho, Marta Hernandez-Lobato, Daniel Univ Autonoma Madrid Comp Sci Dept Francisco Tomas & Valiente 11 E-28049 Madrid Spain
Adversarial variational Bayes (AVB) can infer the parameters of a generative model from the data using approximate maximum likelihood. The likelihood of deep generative models model is intractable. However, it can be ... 详细信息
来源: 评论