咨询与建议

限定检索结果

文献类型

  • 6 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 9 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 9 篇 计算机科学与技术...
    • 3 篇 软件工程

主题

  • 9 篇 in-database mach...
  • 3 篇 gpu
  • 2 篇 inequality joins
  • 2 篇 automatic differ...
  • 2 篇 stochastic gradi...
  • 2 篇 non-polynomial l...
  • 2 篇 functional aggre...
  • 1 篇 data shuffle
  • 1 篇 pairwise contras...
  • 1 篇 deep learning
  • 1 篇 sql
  • 1 篇 multi-query opti...
  • 1 篇 entity linking
  • 1 篇 shuffle
  • 1 篇 joint embedding ...
  • 1 篇 code-generation
  • 1 篇 query compilatio...

机构

  • 2 篇 univ michigan an...
  • 2 篇 univ oxford oxfo...
  • 2 篇 swiss fed inst t...
  • 2 篇 tsinghua univ pe...
  • 2 篇 tech univ munich...
  • 1 篇 univ chicago il ...
  • 1 篇 carnegie mellon ...
  • 1 篇 meta menlo pk ca...
  • 1 篇 beuth univ appl ...
  • 1 篇 hong kong univ s...
  • 1 篇 microsoft res re...
  • 1 篇 univ michigan an...
  • 1 篇 kwai inc peoples...
  • 1 篇 relationalal ber...
  • 1 篇 wuhan univ peopl...
  • 1 篇 chinese acad sci...
  • 1 篇 carnegie mellon ...
  • 1 篇 tum boltzmannstr...
  • 1 篇 chinese acad sci...
  • 1 篇 univ chicago il ...

作者

  • 3 篇 springer maximil...
  • 3 篇 kemper alfons
  • 3 篇 olteanu dan
  • 3 篇 neumann thomas
  • 3 篇 schleich maximil...
  • 2 篇 xu lijie
  • 2 篇 li guoliang
  • 2 篇 moseley benjamin
  • 2 篇 wu wentao
  • 2 篇 jiang jiawei
  • 2 篇 khamis mahmoud a...
  • 2 篇 ye jieping
  • 2 篇 curtin ryan r.
  • 2 篇 liu ji
  • 2 篇 gan shaoduo
  • 2 篇 renggli cedric
  • 2 篇 guennemann steph...
  • 2 篇 schuele maximili...
  • 2 篇 nguyen xuanlong
  • 2 篇 qiu shuang

语言

  • 9 篇 英文
检索条件"主题词=In-Database Machine Learning"
9 条 记 录,以下是1-10 订阅
排序:
in-database machine learning with SQL on GPUs  2021
In-Database Machine Learning with SQL on GPUs
收藏 引用
33rd International Conference on Scientific and Statistical database Management (SSDBM)
作者: Schuele, Maximilian Lang, Harald Springer, Maximilian Kemper, Alfons Neumann, Thomas Guennemann, Stephan Tech Univ Munich Munich Germany
In machine learning, continuously retraining a model guarantees accurate predictions based on the latest data as training input. But to retrieve the latest data from a database, time-consuming extraction is necessary ... 详细信息
来源: 评论
in-database machine learning with CorgiPile: Stochastic Gradient Descent without Full Data Shuffle  22
In-Database Machine Learning with CorgiPile: Stochastic Grad...
收藏 引用
International Conference on Management of Data (SIGMOD)
作者: Xu, Lijie Qiu, Shuang Yuan, Binhang Jiang, Jiawei Renggli, Cedric Gan, Shaoduo Kara, Kaan Li, Guoliang Liu, Ji Wu, Wentao Ye, Jieping Zhang, Ce Swiss Fed Inst Technol Zurich Switzerland Chinese Acad Sci State Key Lab Comp Sci Inst Software Beijing Peoples R China Univ Chicago Chicago IL 60637 USA Tsinghua Univ Beijing Peoples R China Kwai Inc Beijing Peoples R China Microsoft Res Redmond WA USA Univ Michigan Ann Arbor MI 48109 USA
Stochastic gradient descent (SGD) is the cornerstone of modern ML systems. Despite its computational efficiency, SGD requires random data access that is inherently inefficient when implemented in systems that rely on ... 详细信息
来源: 评论
Recursive SQL and GPU-support for in-database machine learning
收藏 引用
DISTRIBUTED AND PARALLEL databaseS 2022年 第2-3期40卷 205-259页
作者: Schuele, Maximilian E. Lang, Harald Springer, Maximilian Kemper, Alfons Neumann, Thomas Guennemann, Stephan TUM Boltzmannstr 3 D-85748 Garching Bavaria Germany
In machine learning, continuously retraining a model guarantees accurate predictions based on the latest data as training input. But to retrieve the latest data from a database, time-consuming extraction is necessary ... 详细信息
来源: 评论
Stochastic gradient descent without full data shuffle: with applications to in-database machine learning and deep learning systems
收藏 引用
VLDB JOURNAL 2024年 第5期33卷 1231-1255页
作者: Xu, Lijie Qiu, Shuang Yuan, Binhang Jiang, Jiawei Renggli, Cedric Gan, Shaoduo Kara, Kaan Li, Guoliang Liu, Ji Wu, Wentao Ye, Jieping Zhang, Ce Swiss Fed Inst Technol Zurich Switzerland Chinese Acad Sci Inst Software Beijing Peoples R China Hong Kong Univ Sci & Technol Clear Water Bay Hong Kong Peoples R China Wuhan Univ Wuhan Peoples R China Tsinghua Univ Beijing Peoples R China Meta Menlo Pk CA USA Microsoft Res Washington DC USA Univ Michigan Ann Arbor MI USA Univ Chicago Chicago IL USA
Modern machine learning (ML) systems commonly use stochastic gradient descent (SGD) to train ML models. However, SGD relies on random data order to converge, which usually requires a full data shuffle. For in-DB ML sy... 详细信息
来源: 评论
LLVM Code Optimisation for Automatic Differentiation When Forward and Reverse Mode Lead in the Same Direction  6
LLVM Code Optimisation for Automatic Differentiation When Fo...
收藏 引用
6th Workshop on Data Management for End-To-End machine learning (DEEM)
作者: Schuele, Maximilian E. Springer, Maximilian Kemper, Alfons Neumann, Thomas Tech Univ Munich Munich Germany
Both forward and reverse mode automatic differentiation derive a model function as used for gradient descent automatically. Reverse mode calculates all derivatives in one run, whereas forward mode requires rerunning t... 详细信息
来源: 评论
On Functional Aggregate Queries with Additive Inequalities  19
On Functional Aggregate Queries with Additive Inequalities
收藏 引用
38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of database Systems (PODS)
作者: Khamis, Mahmoud Abo Curtin, Ryan R. Moseley, Benjamin Ngo, Hung Q. Nguyen, XuanLong Olteanu, Dan Schleich, Maximilian RelationalAl Berkeley CA 94704 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Michigan Ann Arbor MI 48109 USA Univ Oxford Oxford England
Motivated by fundamental applications in databases and relational machine learning, we formulate and study the problem of answering functional aggregate queries (FAQ) in which some of the input factors are defined by ... 详细信息
来源: 评论
Multi-layer Optimizations for End-to-End Data Analytics  2020
Multi-layer Optimizations for End-to-End Data Analytics
收藏 引用
18th ACM/IEEE International Symposium on Code Generation and Optimization (CGO)
作者: Shaikhha, Amir Schleich, Maximilian Ghita, Alexandru Olteanu, Dan Univ Oxford Oxford England
We consider the problem of training machine learning models over multi-relational data. The mainstream approach is to first construct the training dataset using a feature extraction query over input database and then ... 详细信息
来源: 评论
IDEL: In-database Neural Entity Linking
IDEL: In-Database Neural Entity Linking
收藏 引用
IEEE International Conference on Big Data and Smart Computing (BigComp)
作者: Kilias, Torsten Loeser, Alexander Gers, Felix Zhang, Ying Koopmanschap, Richard Kersten, Martin Beuth Univ Appl Sci Luxemburger Str 10 D-13353 Berlin Germany MonetDB Solut Sci Pk 123 NL-1098XG Amsterdam Netherlands
We present a novel architecture In-database Entity Linking (IDEL), in which we integrate the analytical RDBMS MonetDB with neural text mining abilities. To the best of our knowledge, this is the first defacto implemen... 详细信息
来源: 评论
Functional Aggregate Queries with Additive Inequalities
收藏 引用
ACM TRANSACTIONS ON database SYSTEMS 2020年 第4期45卷 17-17页
作者: Khamis, Mahmoud Abo Curtin, Ryan R. Moseley, Benjamin Ngo, Hung Q. Nguyen, Xuanlong Olteanu, Dan Schleich, Maximilian Relat AI Inc 2120 Univ Ave Berkeley CA 94704 USA Carnegie Mellon Univ Tepper Sch Business 5000 Forbes Ave Pittsburgh PA 15213 USA Univ Michigan 61 West Hall1085 South Univ Ann Arbor MI 48109 USA Univ Zurich Dept Informat Andreasstr 15 CH-8050 Zurich Switzerland Univ Washington Paul G Allen Sch Comp Sci & Engn 3800 East Stevens Way NE Seattle WA 98105 USA
Motivated by fundamental applications in databases and relational machine learning, we formulate and study the problem of answering functional aggregate queries (FAQ) in which some of the input factors are defined by ... 详细信息
来源: 评论