咨询与建议

限定检索结果

文献类型

  • 36 篇 期刊文献
  • 21 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 58 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 40 篇 电气工程
    • 34 篇 计算机科学与技术...
    • 12 篇 材料科学与工程(可...
    • 7 篇 信息与通信工程
    • 7 篇 软件工程
    • 5 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
  • 8 篇 理学
    • 7 篇 物理学
    • 1 篇 化学
    • 1 篇 生态学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 58 篇 in-memory comput...
  • 11 篇 memristors
  • 11 篇 memristor
  • 4 篇 convolutional ne...
  • 4 篇 dot-product
  • 4 篇 analog computati...
  • 3 篇 cmos
  • 3 篇 big data
  • 3 篇 crossbar array
  • 3 篇 logic gates
  • 3 篇 stateful logic
  • 3 篇 fefet crossbar a...
  • 3 篇 sram
  • 2 篇 logic in memory
  • 2 篇 hamming distance
  • 2 篇 resistive switch...
  • 2 篇 energy-efficient...
  • 2 篇 energy-efficient...
  • 2 篇 big data analyti...
  • 2 篇 resistance

机构

  • 3 篇 natl univ def te...
  • 3 篇 natl univ def te...
  • 3 篇 korea adv inst s...
  • 2 篇 robert bosch gmb...
  • 2 篇 oakland univ dep...
  • 2 篇 fraunhofer ipms ...
  • 2 篇 seoul natl univ ...
  • 2 篇 seoul natl univ ...
  • 2 篇 singapore univ t...
  • 1 篇 univ louisiana l...
  • 1 篇 univ texas arlin...
  • 1 篇 penn state univ ...
  • 1 篇 rice univ dept e...
  • 1 篇 univ texas austi...
  • 1 篇 intel circuit re...
  • 1 篇 iit roorkee dept...
  • 1 篇 princeton univ d...
  • 1 篇 imperial coll lo...
  • 1 篇 seoul natl univ ...
  • 1 篇 univ florence di...

作者

  • 4 篇 kim kyung min
  • 4 篇 xu nuo
  • 4 篇 hwang cheol seon...
  • 3 篇 taherinejad nima
  • 3 篇 yoon kyung jean
  • 3 篇 fang liang
  • 3 篇 soliman taha
  • 3 篇 guntoro andre
  • 3 篇 kirchner tobias
  • 3 篇 wehn norbert
  • 2 篇 sinha pranav
  • 2 篇 lederer maximili...
  • 2 篇 wang yanzhi
  • 2 篇 wang jingyu
  • 2 篇 yang kaiyuan
  • 2 篇 taha mohammad m....
  • 2 篇 alam mohsen riah...
  • 2 篇 kaempfe thomas
  • 2 篇 jin qing
  • 2 篇 raj sunny

语言

  • 58 篇 英文
检索条件"主题词=In-memory computation"
58 条 记 录,以下是1-10 订阅
排序:
Process-Variation-Aware in-memory computation With Improved Linearity Using On-Chip Configurable Current-Steering Thermometric DAC
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2024年 第10期71卷 4586-4596页
作者: Saragada, Prasanna Kumar Das, Bishnu Prasad Indian Inst Technol Roorkee IIT Roorkee Dept Elect & Commun Engn Roorkee 247667 Uttarakhand India STMicrolectronics Noida 201308 India
The in-memory computation (IMC) is a potentialtechnique to improve the speed and energy efficiency of data-intensive designs. However, the scalability of IMC to largesystems is hindered by the non-linearities of analo... 详细信息
来源: 评论
Translation of Array Expressions for in-memory computation on Memristive Crossbar  36
Translation of Array Expressions for In-Memory Computation o...
收藏 引用
36th International Conference on VLSI Design (VLSID) / 22nd International Conference on Embedded Systems (ES)
作者: Pyne, Sumanta Natl Inst Technol Rourkela Dept Comp Sci & Engn Sundargarh 769008 Odisha India
The von Neumann architectures have a bottleneck of data transfer between memory and processing unit. This degrades performance and increases power consumption for data-intensive applications. The advent of memristor b... 详细信息
来源: 评论
Enabling Novel in-memory computation Algorithms to Address Next-Generation Throughput Constraints on SWaP-Limited Platforms
Enabling Novel In-Memory Computation Algorithms to Address N...
收藏 引用
IEEE High Performance Extreme Computing Virtual Conference (HPEC)
作者: Ray, Jessica Meiners, Chad R. MIT Lincoln Lab Lexington MA USA
The Department of Defense relies heavily on filtering and selection applications to help manage the overwhelming amount of data constantly received at the tactical edge. Filtering and selection are both latency and th... 详细信息
来源: 评论
A Novel Scalable Kernelized Fuzzy Clustering Algorithms Based on in-memory computation for Handling Big Data
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN computationAL INTELLIGENCE 2021年 第6期5卷 908-919页
作者: Jha, Preeti Tiwari, Aruna Bharill, Neha Ratnaparkhe, Milind Mounika, Mukkamalla Nagendra, Neha Indian Inst Technol Indore 453552 India Mahindra Univ Ecole Cent Sch Engn Hyderabad 500043 India ICAR Indian Inst Soybean Res Indore 452001 India
Traditional scalable clustering algorithms mainly deal with the clustering of linearly separable data, but it is challenging to cluster the non-linear separable data efficiently in the feature space. In this article, ... 详细信息
来源: 评论
Trends and Opportunities for SRAM Based In-memory and Near-memory computation  22
Trends and Opportunities for SRAM Based In-Memory and Near-M...
收藏 引用
22nd International Symposium on Quality Electronic Design (ISQED)
作者: Srinivasa, Srivatsa Ramanathan, Akshay Krishna Sundaram, Jainaveen Kurian, Dileep Gopal, Srinivasan Jain, Nilesh Srinivasan, Anuradha Iyer, Ravi Narayanan, Vijaykrishnan Karnik, Tanay Intel Corp Santa Clara CA 95051 USA Penn State Univ University Pk PA 16802 USA
Changes in application trends along with increasing number of connected devices have led to explosion in the amount of data being generated every single day. Computing systems need to efficiently process these huge am... 详细信息
来源: 评论
A Logic Compatible 4T Dual Embedded DRAM Array for in-memory computation of Deep Neural Networks
A Logic Compatible 4T Dual Embedded DRAM Array for In-Memory...
收藏 引用
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
作者: Yoo, Taegeun Kim, Hyunjoon Chen, Qian Kim, Tony Tae-Hyoung Kim, Bongjin Nanyang Technol Univ Sch Elect & Elect Engn 50 Nanyang Ave Singapore 639798 Singapore
Modern deep neural network (DNN) systems evolved under the ever-increasing demands of handling more complex and computation-heavy tasks. Traditional hardware designed for such tasks had larger size memory and power co... 详细信息
来源: 评论
in-memory computation of a Machine-Learning Classifier in a Standard 6T SRAM Array
收藏 引用
IEEE JOURNAL OF SOLID-STATE CIRCUITS 2017年 第4期52卷 915-924页
作者: Zhang, Jintao Wang, Zhuo Verma, Naveen Princeton Univ Dept Elect Engn Princeton NJ 08544 USA
This paper presents a machine-learning classifier where computations are performed in a standard 6T SRAM array, which stores the machine-learning model. Peripheral circuits implement mixed-signal weak classifiers via ... 详细信息
来源: 评论
A Novel Cross-point MRAM with Diode Selector Capable of High-Density, High-Speed, and Low-Power in-memory computation  18
A Novel Cross-point MRAM with Diode Selector Capable of High...
收藏 引用
14th IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)
作者: Ding, Chaoxin Kang, Wang Zhang, He Zhang, Youguang Zhao, Weisheng Beihang Univ Fert Beijing Inst BDBC Sch Elect & Informat Engn Beijing 100191 Peoples R China
in-memory computation (IMC), which is capable of reducing the power consumption and bandwidth requirement resulting from the data transfer between the processing and memory units, has been considered as a promising te... 详细信息
来源: 评论
Processing Data Where It Makes Sense in Modern Computing Systems: Enabling in-memory computation  7
Processing Data Where It Makes Sense in Modern Computing Sys...
收藏 引用
7th Mediterranean Conference on Embedded Computing (MECO)
作者: Mutlu, Onur Swiss Fed Inst Technol Zurich Switzerland Carnegie Mellon Univ Pittsburgh PA 15213 USA
Today's systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in systems that cause performance, scalability and energy bottlenecks: 1)... 详细信息
来源: 评论
An Adaptive Tuning Strategy on Spark Based on in-memory computation Characteristics  18
An Adaptive Tuning Strategy on Spark Based on In-memory Comp...
收藏 引用
18th International Conference on Advanced Communication Technology (ICACT)
作者: Zhao, Yao Hu, Fei Chen, Haopeng Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn 800 Dongchuan Rd Shanghai Peoples R China
We present an adaptive tuning method to improve Spark performance, especially for its in-memory computation. This manner serves one purpose: making a better use of memory reasonably through adaptively adopting suitabl... 详细信息
来源: 评论