咨询与建议

限定检索结果

文献类型

  • 2 篇 会议

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 测绘科学与技术
    • 1 篇 光学工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...
    • 1 篇 航空宇航科学与技...
  • 1 篇 理学
    • 1 篇 物理学

主题

  • 2 篇 in-orbit object ...
  • 1 篇 lightweight cnn
  • 1 篇 resolution
  • 1 篇 lightweight neur...
  • 1 篇 yolo
  • 1 篇 constrained reso...
  • 1 篇 optical remote s...
  • 1 篇 accuracy improve...
  • 1 篇 filter pruning
  • 1 篇 scaling
  • 1 篇 satellite imager...
  • 1 篇 input image size

机构

  • 1 篇 chungnam natl un...
  • 1 篇 china univ geosc...
  • 1 篇 naval univ engn ...
  • 1 篇 east lake lab pe...

作者

  • 1 篇 qiu shaohua
  • 1 篇 kwon jinse
  • 1 篇 kim hyungshin
  • 1 篇 xu xinghua
  • 1 篇 liu jia
  • 1 篇 seo daeun
  • 1 篇 chen du

语言

  • 2 篇 英文
检索条件"主题词=In-orbit object detection"
2 条 记 录,以下是1-10 订阅
排序:
Energy-Constrained Model Pruning for Efficient in-orbit object detection in Optical Remote Sensing Images  1
收藏 引用
7th International Conference on Space Information Network (SINC)
作者: Qiu, Shaohua Chen, Du Xu, Xinghua Liu, Jia Naval Univ Engn Natl Key Lab Electromagnet Energy Wuhan 430033 Peoples R China China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China East Lake Lab Wuhan 430202 Peoples R China
Efficient object detection from optical remote sensing (RS) images has always been an important interpretation task for in-orbit RS applications. In recent years, convolutional neural networks have been widely used fo... 详细信息
来源: 评论
Accuracy Improvement with Input Image Upscaling for in-orbit object detection  28
Accuracy Improvement with Input Image Upscaling for In-Orbit...
收藏 引用
Conference on Image and Signal Processing for Remote Sensing XXVIII
作者: Seo, Daeun Kwon, Jinse Kim, Hyungshin Chungnam Natl Univ Daejeon South Korea
We are studying in-orbit real-time object detection for remote sensing satellites. Due to the small object size of remote sensing images, it is hard to achieve high detection accuracy, especially for resource-constrai... 详细信息
来源: 评论