咨询与建议

限定检索结果

文献类型

  • 314 篇 期刊文献
  • 207 篇 会议
  • 3 篇 学位论文
  • 1 册 图书

馆藏范围

  • 525 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 487 篇 工学
    • 434 篇 计算机科学与技术...
    • 97 篇 软件工程
    • 61 篇 电气工程
    • 48 篇 控制科学与工程
    • 27 篇 信息与通信工程
    • 12 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
  • 82 篇 理学
    • 46 篇 数学
    • 21 篇 生物学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 4 篇 系统科学
    • 2 篇 地理学
  • 37 篇 医学
    • 16 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 36 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 4 篇 公共管理
  • 3 篇 文学
    • 2 篇 外国语言文学
  • 3 篇 农学
    • 2 篇 作物学
  • 2 篇 哲学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 525 篇 inductive logic ...
  • 80 篇 machine learning
  • 25 篇 answer set progr...
  • 23 篇 relational learn...
  • 23 篇 data mining
  • 18 篇 statistical rela...
  • 12 篇 explainable ai
  • 11 篇 logic programmin...
  • 11 篇 predicate invent...
  • 9 篇 reinforcement le...
  • 9 篇 theory revision
  • 8 篇 semantic web
  • 8 篇 ilp
  • 8 篇 information extr...
  • 7 篇 computational le...
  • 7 篇 program synthesi...
  • 7 篇 online learning
  • 7 篇 first-order logi...
  • 7 篇 heuristics
  • 7 篇 meta-interpretiv...

机构

  • 9 篇 katholieke univ ...
  • 8 篇 imperial coll lo...
  • 7 篇 natl inst inform...
  • 6 篇 univ london impe...
  • 6 篇 univ bamberg cog...
  • 6 篇 katholieke univ ...
  • 5 篇 univ oxford oxfo...
  • 5 篇 univ texas dalla...
  • 5 篇 imperial coll lo...
  • 4 篇 univ york dept c...
  • 4 篇 univ waikato dep...
  • 4 篇 res org informat...
  • 4 篇 jozef stefan ins...
  • 4 篇 univ oxford comp...
  • 4 篇 columbia univ ct...
  • 4 篇 tufts univ dept ...
  • 4 篇 univ fed pernamb...
  • 4 篇 univ new south w...
  • 4 篇 univ toulouse 3 ...
  • 3 篇 department of co...

作者

  • 16 篇 inoue katsumi
  • 13 篇 srinivasan ashwi...
  • 13 篇 schmid ute
  • 8 篇 costa vitor sant...
  • 8 篇 muggleton stephe...
  • 8 篇 russo alessandra
  • 7 篇 cropper andrew
  • 7 篇 blockeel h
  • 7 篇 gupta gopal
  • 7 篇 camacho rui
  • 6 篇 dzeroski s
  • 6 篇 ribeiro tony
  • 6 篇 kersting kristia...
  • 6 篇 shakerin farhad
  • 6 篇 zelezny filip
  • 6 篇 zaverucha gerson
  • 5 篇 sakama chiaki
  • 5 篇 de raedt luc
  • 5 篇 law mark
  • 5 篇 siebers michael

语言

  • 497 篇 英文
  • 23 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Inductive Logic Programming"
525 条 记 录,以下是91-100 订阅
排序:
Intelligent analyzing system based on inductive logic programming
Intelligent analyzing system based on Inductive Logic Progra...
收藏 引用
IEEE International Symposium on Intelligent Control (ISIC 01)
作者: Doncescu, A Waisman, J Roux, G Richard, G Dahhou, B CNRS LAAS F-31077 Toulouse France
This paper presents a methodology to design a discrete-event system (DES) for the on-line supervision of biotechnological process. The DES is synthesised applying Wavelet Transform and inductive logic programming on t... 详细信息
来源: 评论
inductive logic programming for corpus-based acquisition of semantic lexicons  00
Inductive logic programming for corpus-based acquisition of ...
收藏 引用
Proceedings of the 2nd workshop on Learning language in logic and the 4th conference on Computational natural language learning - Volume 7
作者: Pascale Sébillot Pierrette Bouillon Cécile Fabre IRISA - Campus de Beaulieu - Rennes cedex - France TIM/ISSCO - ETI - Université de Genève Geneva - Switzerland ERSS - Université de Toulouse II Toulouse cedex - France
In this paper, we propose an inductive logic programming learning method which aims at automatically extracting special Noun-Verb (N-V) pairs from a corpus in order to build up semantic lexicons based on Pustejovsky&#... 详细信息
来源: 评论
Learning semantic lexicons from a part-of-speech and semantically tagged corpus using inductive logic programming
Learning semantic lexicons from a part-of-speech and semanti...
收藏 引用
10th International Conference on inductive logic programming (ILP2000)
作者: Claveau, V Sébillot, P Fabre, U Bouillon, P Inst Rech Informat & Syst Aleatoires F-35042 Rennes France Univ Toulouse 2 ERSS F-31058 Toulouse France Univ Geneva TIM ISSCO ETI CH-1205 Geneva Switzerland
This paper describes an inductive logic programming learning method designed to acquire from a corpus specific Noun-Verb (N-V) pairs-relevant in information retrieval applications to perform index expansion-in order t... 详细信息
来源: 评论
Boosting inductive logic programming via Decomposition, Merging, and Refinement
Boosting Inductive Logic Programming via Decomposition, Merg...
收藏 引用
23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Chovanec, Andrej Bartak, Roman Charles Univ Prague Fac Math & Phys Prague 11800 1 Czech Republic
inductive logic programming (ILP) deals with the problem of finding a hypothesis covering given positive examples and excluding negative examples. It is a subfield of machine learning that uses first-order logic as a ... 详细信息
来源: 评论
Overcoming Reinforcement Learning Limits with inductive logic programming  8th
Overcoming Reinforcement Learning Limits with Inductive Logi...
收藏 引用
World Conference on Information Systems and Technologies (WorldCIST)
作者: Rocha, Filipe Marinho Costa, Vitor Santos Reis, Luis Paulo Univ Porto FCUP Fac Ciencias Porto Portugal Univ Porto FEUP Fac Engn Porto Portugal Univ Porto LIACC Lab Inteligencia Artificial & Ciencia Comp Porto Portugal CRACS Ctr Adv Comp Syst INESCTEC Porto Portugal
This work presents some approaches to overcome current Reinforcement Learning limits. We implement a simple virtual environment and some state-of-the-art Reinforcement Learning algorithms for testing and producing a b... 详细信息
来源: 评论
LPMEME: A statistical method for inductive logic programming  11th
收藏 引用
Proceedings of the 1996 11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI'96
作者: Bhatia, Karan Elkan, Charles Department of Computer Science and Engineering University of California San Diego La Jolla 0114 CA United States
This paper describes LPMEME, a new learning algorithm for inductive logic programming that uses statistical techniques to find first-order patterns. LPMEME takes as input examples in the form of logical facts and outp... 详细信息
来源: 评论
Partitional Clustering of Protein Sequences - An inductive logic programming Approach
收藏 引用
10th International Work-Conference on Artificial Neural Networks (IWANN 2009)
作者: Fonseca, Nuno A. Costa, Vitor S. Camacho, Rui Vieira, Cristina Vieira, Jorge Univ Porto IBMC Rua Campo Alegre 823 P-4150180 Oporto Portugal Univ Porto INESC Porto LA CRACS Porto Portugal Univ Porto LIAAD INSEC Porto LA & FEUP Porto Portugal
We present a novel approach to cluster sets of protein sequences, based on inductive logic programming (ILP). Preliminary results show that;the method proposed Produces understand able descriptions/explanations of the... 详细信息
来源: 评论
inductive logic programming by instance patterns  07
收藏 引用
Proceedings of the 9th international conference on Practical Aspects of Declarative Languages
作者: Chongbing Liu Enrico Pontelli Dept. Computer Science New Mexico State University
Effectiveness and efficiency are two most important properties of ILP approaches. For both top-down and bottom-up search-based approaches, greater efficiency is usually gained at the expense of effectiveness. In this ... 详细信息
来源: 评论
Constraint satisfaction for inductive logic programming
Constraint satisfaction for inductive logic programming
收藏 引用
作者: Chovanec, Andrej Charles University of Prague
inductive logic programming is a discipline investigating invention of clausal theories from observed examples such that for given evidence and background knowledge we are finding a hypothesis covering all positive ex... 详细信息
来源: 评论
Automated identification of protein-ligand interaction features using inductive logic programming: a hexose binding case study
收藏 引用
BMC BIOINFORMATICS 2012年 第1期13卷 1-11页
作者: Santos, Jose C. A. Nassif, Houssam Page, David Muggleton, Stephen H. Sternberg, Michael J. E. Univ London Imperial Coll Sci Technol & Med Dept Comp Sci Computat Bioinformat Lab London SW7 2BZ England Univ Wisconsin Madison Dept Biostat & Med Informat Dept Comp Sci Madison WI 53706 USA Univ London Imperial Coll Sci Technol & Med Ctr Bioinformat Dept Life Sci London SW7 2AZ England
Background: There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is inductive logic ... 详细信息
来源: 评论