咨询与建议

限定检索结果

文献类型

  • 314 篇 期刊文献
  • 207 篇 会议
  • 3 篇 学位论文
  • 1 册 图书

馆藏范围

  • 525 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 487 篇 工学
    • 434 篇 计算机科学与技术...
    • 97 篇 软件工程
    • 61 篇 电气工程
    • 48 篇 控制科学与工程
    • 27 篇 信息与通信工程
    • 12 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
  • 82 篇 理学
    • 46 篇 数学
    • 21 篇 生物学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 4 篇 系统科学
    • 2 篇 地理学
  • 37 篇 医学
    • 16 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 36 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 4 篇 公共管理
  • 3 篇 文学
    • 2 篇 外国语言文学
  • 3 篇 农学
    • 2 篇 作物学
  • 2 篇 哲学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 525 篇 inductive logic ...
  • 80 篇 machine learning
  • 25 篇 answer set progr...
  • 23 篇 relational learn...
  • 23 篇 data mining
  • 18 篇 statistical rela...
  • 12 篇 explainable ai
  • 11 篇 logic programmin...
  • 11 篇 predicate invent...
  • 9 篇 reinforcement le...
  • 9 篇 theory revision
  • 8 篇 semantic web
  • 8 篇 ilp
  • 8 篇 information extr...
  • 7 篇 computational le...
  • 7 篇 program synthesi...
  • 7 篇 online learning
  • 7 篇 first-order logi...
  • 7 篇 heuristics
  • 7 篇 meta-interpretiv...

机构

  • 9 篇 katholieke univ ...
  • 8 篇 imperial coll lo...
  • 7 篇 natl inst inform...
  • 6 篇 univ london impe...
  • 6 篇 univ bamberg cog...
  • 6 篇 katholieke univ ...
  • 5 篇 univ oxford oxfo...
  • 5 篇 univ texas dalla...
  • 5 篇 imperial coll lo...
  • 4 篇 univ york dept c...
  • 4 篇 univ waikato dep...
  • 4 篇 res org informat...
  • 4 篇 jozef stefan ins...
  • 4 篇 univ oxford comp...
  • 4 篇 columbia univ ct...
  • 4 篇 tufts univ dept ...
  • 4 篇 univ fed pernamb...
  • 4 篇 univ new south w...
  • 4 篇 univ toulouse 3 ...
  • 3 篇 department of co...

作者

  • 16 篇 inoue katsumi
  • 13 篇 srinivasan ashwi...
  • 13 篇 schmid ute
  • 8 篇 costa vitor sant...
  • 8 篇 muggleton stephe...
  • 8 篇 russo alessandra
  • 7 篇 cropper andrew
  • 7 篇 blockeel h
  • 7 篇 gupta gopal
  • 7 篇 camacho rui
  • 6 篇 dzeroski s
  • 6 篇 ribeiro tony
  • 6 篇 kersting kristia...
  • 6 篇 shakerin farhad
  • 6 篇 zelezny filip
  • 6 篇 zaverucha gerson
  • 5 篇 sakama chiaki
  • 5 篇 de raedt luc
  • 5 篇 law mark
  • 5 篇 siebers michael

语言

  • 497 篇 英文
  • 23 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Inductive Logic Programming"
525 条 记 录,以下是141-150 订阅
排序:
Prototyping structural description using an inductive learning program
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS 2000年 第1期30卷 150-157页
作者: Amin, A Univ New S Wales Sch Comp Sci Sydney NSW 2052 Australia
Character recognition systems can contribute tremendously to the advancement of the automation process and can improve the interaction between man and machine in many applications, including office automation, check v... 详细信息
来源: 评论
Using background knowledge to build multistrategy learners
收藏 引用
MACHINE LEARNING 1997年 第3期27卷 241-257页
作者: Sammut, C School of Computer Science and Engineering University of New South Wales Sydney Australia
This paper discusses the role that background knowledge can play in building flexible multistrategy learning systems. We contend that a variety of learning strategies can be embodied in the background knowledge provid... 详细信息
来源: 评论
Learning explanations for biological feedback with delays using an event calculus
收藏 引用
MACHINE LEARNING 2022年 第7期111卷 2435-2487页
作者: Srinivasan, Ashwin Bain, Michael Baskar, A. BITS Pilani Dept CSIS & APPCAIR Goa Campus Sancoale Goa India Univ New South Wales Sch Comp Sci & Engn Sydney NSW Australia BITS Pilani Dept Comp Sci & Informat Syst Sancoale Goa India
We propose the identification of feedback mechanisms in biological systems by learning logical rules in R. Thomas' Kinetic logic (Thomas and D'Ari in Biological feedback. CRC Press, 1990). The principal advant... 详细信息
来源: 评论
Brave induction: a logical framework for learning from incomplete information
收藏 引用
MACHINE LEARNING 2009年 第1期76卷 3-35页
作者: Sakama, Chiaki Inoue, Katsumi Wakayama Univ Dept Comp & Commun Sci Wakayama 6408510 Japan Res Org Informat & Syst Natl Inst Informat Chiyoda Ku Tokyo 1018430 Japan
This paper introduces a novel logical framework for concept-learning called brave induction. Brave induction uses brave inference for induction and is useful for learning from incomplete information. Brave induction i... 详细信息
来源: 评论
logical Explanations for Deep Relational Machines Using Relevance Information
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2019年 第1期20卷 1-47页
作者: Srinivasan, Ashwin Vig, Lovekesh Bain, Michael BITS Pilani Dept Comp Sc & Informat Syst KK Birla Goa Campus Zuari Nagar Goa India TCS Res New Delhi India Univ New South Wales Sch Comp Sci & Engn Sydney NSW Australia
Our interest in this paper is in the construction of symbolic explanations for predictions made by a deep neural network. We will focus attention on deep relational machines (DRMs: a term introduced in Lodhi (2013)). ... 详细信息
来源: 评论
Levelwise search and pruning strategies for first-order hypothesis spaces
收藏 引用
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS 2000年 第2-3期14卷 217-239页
作者: Weber, I Univ Stuttgart Inst Informat D-70565 Stuttgart Germany
The discovery of interesting patterns in relational databases is an important data mining task. This paper is concerned with the development of a search algorithm for first-order hypothesis spaces adopting an importan... 详细信息
来源: 评论
A study of relevance for learning in deductive databases
收藏 引用
JOURNAL OF logic programming 1999年 第2-3期40卷 215-249页
作者: Lavrac, N Gamberger, D Jovanoski, V Jozef Stefan Inst Ljubljana 1000 Slovenia Rudjer Boskovic Inst Zagreb 10000 Croatia
This paper is a study of the problem of relevance in inductive concept learning. It gives definitions of irrelevant literals and irrelevant examples and presents efficient algorithms that enable their elimination. The... 详细信息
来源: 评论
FFNSL: Feed-Forward Neural-Symbolic Learner
收藏 引用
MACHINE LEARNING 2023年 第2期112卷 515-569页
作者: Cunnington, Daniel Law, Mark Lobo, Jorge Russo, Alessandra IBM Res Europe Winchester England Imperial Coll London London England ILASP Ltd Grantham England Univ Pompeu Fabra ICREA Barcelona Spain
logic-based machine learning aims to learn general, interpretable knowledge in a data-efficient manner. However, labelled data must be specified in a structured logical form. To address this limitation, we propose a n... 详细信息
来源: 评论
Machine Learning from examples: inductive and Lazy methods
收藏 引用
DATA & KNOWLEDGE ENGINEERING 1998年 第1-2期25卷 99-123页
作者: de Mantaras, RL Armengol, E CSIC Artificial Intelligence Res Inst Bellaterra 08193 Spain
Machine Learning from examples may be used, within Artificial Intelligence, as a way to acquire general knowledge or associate to a concrete problem solving system. inductive learning methods are typically used to acq... 详细信息
来源: 评论
Generalization by absorption of definite clauses
收藏 引用
JOURNAL OF logic programming 1999年 第2-3期40卷 127-157页
作者: Taylor, K CSIRO Math & Informat Sci Canberra ACT 2601 Australia
Absorption is one of the so-called inverse resolution operators of inductive logic programming. The paper studies the properties of absorption that make it suitable for incremental generalization of definite clauses u... 详细信息
来源: 评论