咨询与建议

限定检索结果

文献类型

  • 314 篇 期刊文献
  • 207 篇 会议
  • 3 篇 学位论文
  • 1 册 图书

馆藏范围

  • 525 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 487 篇 工学
    • 434 篇 计算机科学与技术...
    • 97 篇 软件工程
    • 61 篇 电气工程
    • 48 篇 控制科学与工程
    • 27 篇 信息与通信工程
    • 12 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
  • 82 篇 理学
    • 46 篇 数学
    • 21 篇 生物学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 4 篇 系统科学
    • 2 篇 地理学
  • 37 篇 医学
    • 16 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 36 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 4 篇 公共管理
  • 3 篇 文学
    • 2 篇 外国语言文学
  • 3 篇 农学
    • 2 篇 作物学
  • 2 篇 哲学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 525 篇 inductive logic ...
  • 80 篇 machine learning
  • 25 篇 answer set progr...
  • 23 篇 relational learn...
  • 23 篇 data mining
  • 18 篇 statistical rela...
  • 12 篇 explainable ai
  • 11 篇 logic programmin...
  • 11 篇 predicate invent...
  • 9 篇 reinforcement le...
  • 9 篇 theory revision
  • 8 篇 semantic web
  • 8 篇 ilp
  • 8 篇 information extr...
  • 7 篇 computational le...
  • 7 篇 program synthesi...
  • 7 篇 online learning
  • 7 篇 first-order logi...
  • 7 篇 heuristics
  • 7 篇 meta-interpretiv...

机构

  • 9 篇 katholieke univ ...
  • 8 篇 imperial coll lo...
  • 7 篇 natl inst inform...
  • 6 篇 univ london impe...
  • 6 篇 univ bamberg cog...
  • 6 篇 katholieke univ ...
  • 5 篇 univ oxford oxfo...
  • 5 篇 univ texas dalla...
  • 5 篇 imperial coll lo...
  • 4 篇 univ york dept c...
  • 4 篇 univ waikato dep...
  • 4 篇 res org informat...
  • 4 篇 jozef stefan ins...
  • 4 篇 univ oxford comp...
  • 4 篇 columbia univ ct...
  • 4 篇 tufts univ dept ...
  • 4 篇 univ fed pernamb...
  • 4 篇 univ new south w...
  • 4 篇 univ toulouse 3 ...
  • 3 篇 department of co...

作者

  • 16 篇 inoue katsumi
  • 13 篇 srinivasan ashwi...
  • 13 篇 schmid ute
  • 8 篇 costa vitor sant...
  • 8 篇 muggleton stephe...
  • 8 篇 russo alessandra
  • 7 篇 cropper andrew
  • 7 篇 blockeel h
  • 7 篇 gupta gopal
  • 7 篇 camacho rui
  • 6 篇 dzeroski s
  • 6 篇 ribeiro tony
  • 6 篇 kersting kristia...
  • 6 篇 shakerin farhad
  • 6 篇 zelezny filip
  • 6 篇 zaverucha gerson
  • 5 篇 sakama chiaki
  • 5 篇 de raedt luc
  • 5 篇 law mark
  • 5 篇 siebers michael

语言

  • 497 篇 英文
  • 23 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Inductive Logic Programming"
525 条 记 录,以下是151-160 订阅
排序:
MP-HTHEDL: A Massively Parallel Hypothesis Evaluation Engine in Description logic
收藏 引用
IEEE ACCESS 2024年 12卷 89113-89123页
作者: Algahtani, Eyad King Saud Univ Coll Appl Comp Sci Dept Informat Syst Riyadh 145111 Saudi Arabia
We present MP-HTHEDL, a massively parallel hypothesis evaluation engine for inductive learning in description logic (DL). MP-HTHEDL is an extension on our previous work HT-HEDL, which also targets improving hypothesis... 详细信息
来源: 评论
Parameter Screening and Optimisation for ILP using Designed Experiments
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2011年 第2期12卷 627-662页
作者: Srinivasan, Ashwin Ramakrishnan, Ganesh S Asian Univ Sch Math Sci New Delhi 110067 India S Asian Univ ICT New Delhi 110067 India Indian Inst Technol Dept Comp Sci & Engn Bombay 400076 Maharashtra India Univ New S Wales Sch CSE Sydney NSW Australia
Reports of experiments conducted with an inductive logic programming system rarely describe how specific values of parameters of the system are arrived at when constructing models. Usually, no attempt is made to ident... 详细信息
来源: 评论
Confirmation-guided discovery of first-order rules with Tertius
收藏 引用
MACHINE LEARNING 2001年 第1-2期42卷 61-95页
作者: Flach, PA Lachiche, N Univ Bristol Dept Comp Sci Bristol BS8 1TH Avon England
This paper deals with learning first-order logic rules from data lacking an explicit classification predicate. Consequently, the learned rules are not restricted to predicate definitions as in supervised inductive log... 详细信息
来源: 评论
Meta-Interpretive Learning from noisy images
收藏 引用
MACHINE LEARNING 2018年 第7期107卷 1097-1118页
作者: Muggleton, Stephen Dai, Wang-Zhou Sammut, Claude Tamaddoni-Nezhad, Alireza Wen, Jing Zhou, Zhi-Hua Imperial Coll London Dept Comp London England Nanjing Univ LAMDA Grp Nanjing Jiangsu Peoples R China Univ New South Wales Sch Comp Sci & Engn Sydney NSW Australia Univ Surrey Dept Comp Sci Guildford Surrey England Shanxi Univ Sch Comp & Informat Technol Taiyuan Shanxi Peoples R China
Statistical machine learning is widely used in image classification. However, most techniques (1) require many images to achieve high accuracy and (2) do not provide support for reasoning below the level of classifica... 详细信息
来源: 评论
The subsumption lattice and query learning
收藏 引用
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 2006年 第1期72卷 72-94页
作者: Khardon, R Arias, M Tufts Univ Dept Comp Sci Medford MA 02155 USA Columbia Univ Ctr Computat Learning Syst New York NY 10115 USA
The paper identifies several new properties of the lattice induced by the subsumption relation over first-order clauses and derives implications of these for learnability. In particular, it is shown that the length of... 详细信息
来源: 评论
Inverse reinforcement learning through logic constraint inference
收藏 引用
MACHINE LEARNING 2023年 第7期112卷 2593-2618页
作者: Baert, Mattijs Leroux, Sam Simoens, Pieter Univ Ghent imec Dept Informat Technol IDLab Technol pk 126 B-9052 Ghent Belgium
Autonomous robots start to be integrated in human environments where explicit and implicit social norms guide the behavior of all agents. To assure safety and predictability, these artificial agents should act in acco... 详细信息
来源: 评论
Composition of relational features with an application to explaining black-box predictors
收藏 引用
MACHINE LEARNING 2024年 第3期113卷 1091-1132页
作者: Srinivasan, Ashwin Baskar, A. Dash, Tirtharaj Shah, Devanshu BITS Pilani Dept CS&IS KK Birla Goa Campus Pilani Goa India BITS Pilani APPCAIR Pilani Goa India Univ Calif San Diego San Diego CA USA
Three key strengths of relational machine learning programs like those developed in inductive logic programming (ILP) are: (1) The use of an expressive subset of first-order logic that allows models that capture compl... 详细信息
来源: 评论
logical settings for concept-learning
收藏 引用
ARTIFICIAL INTELLIGENCE 1997年 第1期95卷 187-201页
作者: DeRaedt, L Department of Computer Science Katholieke Universiteit Leuven Celestijnenlaan 200A B-3001 Heverlee Belgium
Three different formalizations of concept-learning in logic (as well as some variants) are analyzed and related. It is shown that learning from interpretations reduces to learning from entailment, which in rum reduces... 详细信息
来源: 评论
Generating numerical constraints in CILP
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2005年 第1期19卷 91-108页
作者: Zheng, L Liu, CN Jia, L Zhong, N Beijing Univ Technol Coll Comp Sci Beijing Municipal Key Lab Multimed & Intelligent Beijing 100022 Peoples R China Maebashi Inst Technol Dept Informat Engn Maebashi Gumma 3710816 Japan
A continuing problem with inductive logic programming (ILP) has been the poor handling of numbers. Constraint inductive logic programming (CILP) aims to solve this problem with ILP. We propose a new approach to genera... 详细信息
来源: 评论
FOLD-RM: A Scalable, Efficient, and Explainable inductive Learning Algorithm for Multi-Category Classification of Mixed Data
收藏 引用
THEORY AND PRACTICE OF logic programming 2022年 第5期22卷 658-677页
作者: Wang, Huaduo Shakerin, Farhad Gupta, Gopal Univ Texas Dallas Richardson TX 75083 USA
FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for multi-category classi... 详细信息
来源: 评论