咨询与建议

限定检索结果

文献类型

  • 314 篇 期刊文献
  • 207 篇 会议
  • 3 篇 学位论文
  • 1 册 图书

馆藏范围

  • 525 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 487 篇 工学
    • 434 篇 计算机科学与技术...
    • 97 篇 软件工程
    • 61 篇 电气工程
    • 48 篇 控制科学与工程
    • 27 篇 信息与通信工程
    • 12 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
  • 82 篇 理学
    • 46 篇 数学
    • 21 篇 生物学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 4 篇 系统科学
    • 2 篇 地理学
  • 37 篇 医学
    • 16 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 36 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 4 篇 公共管理
  • 3 篇 文学
    • 2 篇 外国语言文学
  • 3 篇 农学
    • 2 篇 作物学
  • 2 篇 哲学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 525 篇 inductive logic ...
  • 80 篇 machine learning
  • 25 篇 answer set progr...
  • 23 篇 relational learn...
  • 23 篇 data mining
  • 18 篇 statistical rela...
  • 12 篇 explainable ai
  • 11 篇 logic programmin...
  • 11 篇 predicate invent...
  • 9 篇 reinforcement le...
  • 9 篇 theory revision
  • 8 篇 semantic web
  • 8 篇 ilp
  • 8 篇 information extr...
  • 7 篇 computational le...
  • 7 篇 program synthesi...
  • 7 篇 online learning
  • 7 篇 first-order logi...
  • 7 篇 heuristics
  • 7 篇 meta-interpretiv...

机构

  • 9 篇 katholieke univ ...
  • 8 篇 imperial coll lo...
  • 7 篇 natl inst inform...
  • 6 篇 univ london impe...
  • 6 篇 univ bamberg cog...
  • 6 篇 katholieke univ ...
  • 5 篇 univ oxford oxfo...
  • 5 篇 univ texas dalla...
  • 5 篇 imperial coll lo...
  • 4 篇 univ york dept c...
  • 4 篇 univ waikato dep...
  • 4 篇 res org informat...
  • 4 篇 jozef stefan ins...
  • 4 篇 univ oxford comp...
  • 4 篇 columbia univ ct...
  • 4 篇 tufts univ dept ...
  • 4 篇 univ fed pernamb...
  • 4 篇 univ new south w...
  • 4 篇 univ toulouse 3 ...
  • 3 篇 department of co...

作者

  • 16 篇 inoue katsumi
  • 13 篇 srinivasan ashwi...
  • 13 篇 schmid ute
  • 8 篇 costa vitor sant...
  • 8 篇 muggleton stephe...
  • 8 篇 russo alessandra
  • 7 篇 cropper andrew
  • 7 篇 blockeel h
  • 7 篇 gupta gopal
  • 7 篇 camacho rui
  • 6 篇 dzeroski s
  • 6 篇 ribeiro tony
  • 6 篇 kersting kristia...
  • 6 篇 shakerin farhad
  • 6 篇 zelezny filip
  • 6 篇 zaverucha gerson
  • 5 篇 sakama chiaki
  • 5 篇 de raedt luc
  • 5 篇 law mark
  • 5 篇 siebers michael

语言

  • 497 篇 英文
  • 23 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Inductive Logic Programming"
525 条 记 录,以下是181-190 订阅
排序:
inductive LEARNING IN DEDUCTIVE DATABASES
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1993年 第6期5卷 939-949页
作者: DZEROSKI, S LAVRAC, N Jožef Stefan institute Ljubljana Slovenia
Most current applications of inductive learning in databases take place in the context of a single extensional relation. This paper puts inductive learning in the context of a set of relations defined either extension... 详细信息
来源: 评论
Automatic Learning of Temporal Relations Under the Closed World Assumption
收藏 引用
FUNDAMENTA INFORMATICAE 2013年 第1-2期124卷 133-151页
作者: Nicoletti, M. C. Lisboa, F. O. S. S. Hruschka, E. R., Jr. Univ Fed Sao Carlos DC Sao Carlos SP Brazil FACCAMP Cl Paulista SP Brazil Univ Sao Paulo IFSC Sao Carlos SP Brazil
Time plays an important role in the vast majority of problems and, as such, it is a vital issue to be considered when developing computer systems for solving problems. In the literature, one of the most influential fo... 详细信息
来源: 评论
Learning logic programs by explaining their failures
收藏 引用
MACHINE LEARNING 2023年 第10期112卷 3917-3943页
作者: Morel, Rolf Cropper, Andrew Univ Oxford Oxford England
Scientists form hypotheses and experimentally test them. If a hypothesis fails (is refuted), scientists try to explain the failure to eliminate other hypotheses. The more precise the failure analysis the more hypothes... 详细信息
来源: 评论
Multi-class Mode of Action Classification of Toxic Compounds Using logic Based Kernel Methods
收藏 引用
MOLECULAR INFORMATICS 2010年 第8-9期29卷 655-664页
作者: Lodhi, Huma Muggleton, Stephen Sternberg, Mike J. E. Brunel Univ Sch Informat Syst Comp & Math Uxbridge UB8 3PH Middx England Univ London Imperial Coll Sci Technol & Med Dept Comp London SW7 2AZ England Univ London Imperial Coll Sci Technol & Med Div Mol Biosci Struct Bioinformat Grp London SW7 2AZ England
Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use o... 详细信息
来源: 评论
The effect of relational background knowledge on learning of protein three-dimensional fold signatures
收藏 引用
MACHINE LEARNING 2001年 第1-2期43卷 81-95页
作者: Turcotte, M Muggleton, SH Sternberg, MJE Imperial Canc Res Fund Biomolec Modelling Lab London WC2A 3PX England Univ York Dept Comp Sci York YO1 5DD N Yorkshire England
As a form of Machine Learning the study of inductive logic programming (ILP) is motivated by a central belief: relational description languages are better tin terms of accuracy and understandability) than propositiona... 详细信息
来源: 评论
Pruning algorithms for rule learning
收藏 引用
MACHINE LEARNING 1997年 第2期27卷 139-171页
作者: Furnkranz, J Austrian Research Institute for Artificial Intelligence Vienna Austria
Pre-pruning and Post-pruning are two standard techniques for handling noise in decision tree learning. Pre-pruning deals with noise during learning, while post-pruning addresses this problem after an overfitting theor... 详细信息
来源: 评论
Identification of biological transition systems using meta-interpreted logic programs
收藏 引用
MACHINE LEARNING 2018年 第7期107卷 1171-1206页
作者: Bain, Michael Srinivasan, Ashwin Univ New South Wales Sch Comp Sci & Engn Sydney NSW Australia BITS Pilani Dept Comp Sci & Informat Syst Goa Campus Sancoale India
We adopt the principal idea from Plotkin's Structural Operational Semantics (SOS), in which computation by a system is to be understood using: (a) a signature of configurations,;(b) a binary relation () defined ov... 详细信息
来源: 评论
Finding relational redescriptions
收藏 引用
MACHINE LEARNING 2014年 第3期96卷 225-248页
作者: Galbrun, Esther Kimmig, Angelika Univ Helsinki Dept Comp Sci Helsinki 00014 Finland Univ Helsinki Helsinki Inst Informat Technol FIN-00014 Helsinki Finland Katholieke Univ Leuven Dept Computerwetenschappen B-3001 Heverlee Belgium
We introduce relational redescription mining, that is, the task of finding two structurally different patterns that describe nearly the same set of object pairs in a relational dataset. By extending redescription mini... 详细信息
来源: 评论
Rule learning by modularity
收藏 引用
MACHINE LEARNING 2024年 第10期113卷 7479-7508页
作者: Noessig, Albert Hell, Tobias Moser, Georg Univ Innsbruck Dept Comp Sci Techniker str 21a A-6020 Innsbruck Tyrol Austria Data Lab Hell GmbH Europa str 2a A-6170 Zirl Tyrol Austria
In this paper, we present a modular methodology that combines state-of-the-art methods in (stochastic) machine learning with well-established methods in inductive logic programming (ILP) and rule induction to provide ... 详细信息
来源: 评论
Completing causal networks by meta-level abduction
收藏 引用
MACHINE LEARNING 2013年 第2期91卷 239-277页
作者: Inoue, Katsumi Doncescu, Andrei Nabeshima, Hidetomo Res Org Informat & Syst Natl Inst Informat Chiyoda Ku Tokyo 1018430 Japan LAAS CNRS UPR 8001 F-31007 Toulouse France Univ Yamanashi Div Med & Engn Sci Kofu Yamanashi 4008511 Japan
Meta-level abduction is a method to abduce missing rules in explaining observations. By representing rule structures of a problem in a form of causal networks, meta-level abduction infers missing links and unknown nod... 详细信息
来源: 评论