咨询与建议

限定检索结果

文献类型

  • 314 篇 期刊文献
  • 207 篇 会议
  • 3 篇 学位论文
  • 1 册 图书

馆藏范围

  • 525 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 486 篇 工学
    • 433 篇 计算机科学与技术...
    • 96 篇 软件工程
    • 60 篇 电气工程
    • 47 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 12 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
  • 81 篇 理学
    • 45 篇 数学
    • 21 篇 生物学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 4 篇 系统科学
    • 2 篇 地理学
  • 37 篇 医学
    • 16 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 36 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 4 篇 公共管理
  • 3 篇 文学
    • 2 篇 外国语言文学
  • 3 篇 农学
    • 2 篇 作物学
  • 2 篇 哲学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 525 篇 inductive logic ...
  • 80 篇 machine learning
  • 24 篇 answer set progr...
  • 23 篇 relational learn...
  • 23 篇 data mining
  • 18 篇 statistical rela...
  • 11 篇 logic programmin...
  • 11 篇 predicate invent...
  • 11 篇 explainable ai
  • 9 篇 theory revision
  • 8 篇 reinforcement le...
  • 8 篇 semantic web
  • 8 篇 ilp
  • 8 篇 information extr...
  • 7 篇 computational le...
  • 7 篇 program synthesi...
  • 7 篇 online learning
  • 7 篇 first-order logi...
  • 7 篇 heuristics
  • 7 篇 meta-interpretiv...

机构

  • 9 篇 katholieke univ ...
  • 8 篇 imperial coll lo...
  • 7 篇 natl inst inform...
  • 6 篇 univ london impe...
  • 6 篇 univ bamberg cog...
  • 6 篇 katholieke univ ...
  • 5 篇 univ oxford oxfo...
  • 5 篇 univ texas dalla...
  • 5 篇 imperial coll lo...
  • 4 篇 univ york dept c...
  • 4 篇 univ waikato dep...
  • 4 篇 res org informat...
  • 4 篇 jozef stefan ins...
  • 4 篇 univ oxford comp...
  • 4 篇 columbia univ ct...
  • 4 篇 tufts univ dept ...
  • 4 篇 univ fed pernamb...
  • 4 篇 univ new south w...
  • 4 篇 univ toulouse 3 ...
  • 3 篇 department of co...

作者

  • 16 篇 inoue katsumi
  • 13 篇 srinivasan ashwi...
  • 13 篇 schmid ute
  • 8 篇 costa vitor sant...
  • 8 篇 muggleton stephe...
  • 8 篇 russo alessandra
  • 7 篇 cropper andrew
  • 7 篇 blockeel h
  • 7 篇 gupta gopal
  • 7 篇 camacho rui
  • 6 篇 dzeroski s
  • 6 篇 ribeiro tony
  • 6 篇 kersting kristia...
  • 6 篇 shakerin farhad
  • 6 篇 zelezny filip
  • 6 篇 zaverucha gerson
  • 5 篇 sakama chiaki
  • 5 篇 de raedt luc
  • 5 篇 law mark
  • 5 篇 siebers michael

语言

  • 498 篇 英文
  • 22 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Inductive Logic programming"
525 条 记 录,以下是451-460 订阅
排序:
Advantages of decision lists and implicit negatives in inductive logic programming
收藏 引用
NEW GENERATION COMPUTING 1998年 第3期16卷 263-281页
作者: Califf, ME Mooney, RJ Univ Texas Dept Comp Sci Austin TX 78712 USA
This paper demonstrates the capabilities of FOIDL, an inductive logic programming (ILP) system whose distinguishing characteristics are the ability to produce first-order decision lists, the use of an output completen... 详细信息
来源: 评论
Knowledge base for finite-element mesh design learned by inductive logic programming
收藏 引用
AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING 1998年 第2期12卷 95-106页
作者: Dolsak, B Bratko, I Jezernik, A Univ Maribor Fac Mech Engn SLO-2000 Maribor Slovenia Univ Ljubljana Fac Comp & Informat Sci Ljubljana 61000 Slovenia
This paper addresses an important application of machine learning (ML) in design. One of the major bottlenecks in the process of engineering analysis by using the finite-element method-a design of the finite-element m... 详细信息
来源: 评论
Prediction of ordinal classes using regression trees
收藏 引用
FUNDAMENTA INFORMATICAE 2001年 第1-2期47卷 1-13页
作者: Kramer, S Pfahringer, B Widmer, G De Groeve, M Univ Freiburg Inst Comp Sci D-79110 Freiburg Germany Univ Waikato Dept Comp Sci Hamilton New Zealand Univ Vienna Dept Med Cybernet & AI A-1010 Vienna Austria Austrian Res Inst Artificial Intelligence A-1010 Vienna Austria Katholieke Univ Leuven Dept Comp Sci Louvain Belgium
This paper is devoted to the problem of learning to predict ordinal (i.e., ordered discrete) classes using classification and regression trees. We start with S-CART, a tree induction algorithm, and study various ways ... 详细信息
来源: 评论
Discovering knowledge from graph structured data by using refutably inductive inference of formal graph systems
收藏 引用
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2001年 第1期E84D卷 48-56页
作者: Miyahara, T Uchida, T Shoudai, T Kuboyama, T Takahashi, K Ueda, H Hiroshima City Univ Fac Informat Sci Hiroshima 7313194 Japan Kyushu Univ Dept Informat Kasuga Fukuoka 8168580 Japan Univ Tokyo Ctr Collaborat Res Tokyo 1530041 Japan
We present a new method for discovering knowledge from structured data which are represented Ly graphs in the framework of inductive logic programming. A graph, or network, is widely used for representing relations be... 详细信息
来源: 评论
Prototyping structural description using an inductive learning program
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS 2000年 第1期30卷 150-157页
作者: Amin, A Univ New S Wales Sch Comp Sci Sydney NSW 2052 Australia
Character recognition systems can contribute tremendously to the advancement of the automation process and can improve the interaction between man and machine in many applications, including office automation, check v... 详细信息
来源: 评论
Levelwise search and pruning strategies for first-order hypothesis spaces
收藏 引用
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS 2000年 第2-3期14卷 217-239页
作者: Weber, I Univ Stuttgart Inst Informat D-70565 Stuttgart Germany
The discovery of interesting patterns in relational databases is an important data mining task. This paper is concerned with the development of a search algorithm for first-order hypothesis spaces adopting an importan... 详细信息
来源: 评论
Resource-bounded relational reasoning: Induction and deduction through stochastic matching
收藏 引用
MACHINE LEARNING 2000年 第1-2期38卷 41-62页
作者: Sebag, M Rouveirol, C Ecole Polytech LMS CNRS UMR 7649 F-91128 Palaiseau France Univ Paris 11 LRI CNRS UMR 8623 Orsay France
One of the obstacles to widely using first-order logic languages is the fact that relational inference is intractable in the worst case. This paper presents an any-time relational inference algorithm: it proceeds by s... 详细信息
来源: 评论
Bottom-up induction of feature terms
收藏 引用
MACHINE LEARNING 2000年 第3期41卷 259-294页
作者: Armengol, E Plaza, E CSIC Artificial Intelligence Res Inst Bellaterra 08193 Catalonia Spain
The aim of relational learning is to develop methods for the induction of hypotheses in representation formalisms that are more expressive than attribute-value representation. Most work on relational learning has been... 详细信息
来源: 评论
PYTHIA-II: A knowledge/database system for managing performance data and recommending scientific software
收藏 引用
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 2000年 第2期26卷 227-253页
作者: Houstis, EN Catlin, AC Rice, JR Verykios, VS Ramakrishnan, N Houstis, CE Purdue Univ Dept Comp Sci W Lafayette IN 47906 USA Drexel Univ Coll Informat Sci & Technol Philadelphia PA 19104 USA Virginia Polytech Inst & State Univ Dept Comp Sci Blacksburg VA 24061 USA Univ Crete Dept Comp Sci Iraklion Greece
Often scientists need to locate appropriate software for their problems and then select from among many alternatives. We have previously proposed an approach for dealing with this task by processing performance data o... 详细信息
来源: 评论
Strategies in combined learning via logic programs
收藏 引用
MACHINE LEARNING 2000年 第1-2期38卷 63-87页
作者: Lamma, E Riguzzi, F Pereira, LM Univ Bologna DEIS I-40136 Bologna Italy Univ Nova Lisboa Fac Ciencias & Tecnol Dept Informat Ctr Inteligencia Artificial P-2825 Monte De Caparica Portugal
We discuss the adoption of a three-valued setting for inductive concept learning. Distinguishing between what is true, what is false and what is unknown can be useful in situations where decisions have to be taken on ... 详细信息
来源: 评论