咨询与建议

限定检索结果

文献类型

  • 98 篇 期刊文献
  • 21 篇 会议
  • 1 册 图书
  • 1 篇 学位论文

馆藏范围

  • 121 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 74 篇 理学
    • 41 篇 统计学(可授理学、...
    • 31 篇 数学
    • 13 篇 物理学
    • 6 篇 生物学
    • 5 篇 地球物理学
    • 3 篇 化学
    • 2 篇 地质学
  • 72 篇 工学
    • 23 篇 计算机科学与技术...
    • 13 篇 力学(可授工学、理...
    • 11 篇 材料科学与工程(可...
    • 9 篇 电气工程
    • 7 篇 土木工程
    • 5 篇 光学工程
    • 5 篇 控制科学与工程
    • 5 篇 建筑学
    • 5 篇 地质资源与地质工...
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 动力工程及工程热...
    • 3 篇 环境科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
  • 21 篇 经济学
    • 18 篇 应用经济学
    • 4 篇 理论经济学
  • 6 篇 医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 6 篇 管理学
    • 4 篇 管理科学与工程(可...
  • 3 篇 教育学
    • 3 篇 心理学(可授教育学...
  • 3 篇 农学
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 法学

主题

  • 121 篇 influence functi...
  • 8 篇 robustness
  • 4 篇 residual stress
  • 4 篇 subsidence
  • 4 篇 deformable mirro...
  • 4 篇 deformable mirro...
  • 3 篇 boundary element...
  • 3 篇 heat flux
  • 3 篇 dimension reduct...
  • 3 篇 efficiency
  • 3 篇 tracin
  • 3 篇 discriminant ana...
  • 3 篇 adaptive optics
  • 3 篇 peridynamics
  • 3 篇 machine learning
  • 3 篇 meshfree method
  • 3 篇 explainability
  • 3 篇 underground mini...
  • 2 篇 sliced inverse r...
  • 2 篇 zernike polynomi...

机构

  • 4 篇 natl res univ mo...
  • 2 篇 univ oviedo min ...
  • 2 篇 oak ridge natl l...
  • 2 篇 kakatiya inst te...
  • 2 篇 univ s carolina ...
  • 2 篇 univ oviedo dept...
  • 2 篇 univ oviedo min ...
  • 2 篇 sandia natl labs...
  • 2 篇 univ oviedo dept...
  • 2 篇 univ oviedo min ...
  • 2 篇 univ pisa dimnp ...
  • 2 篇 n carolina state...
  • 2 篇 natl chung cheng...
  • 1 篇 1. university of...
  • 1 篇 louisiana state ...
  • 1 篇 nci biostat bran...
  • 1 篇 rowan univ dept ...
  • 1 篇 alan turing inst...
  • 1 篇 russian acad sci...
  • 1 篇 harvard th chan ...

作者

  • 3 篇 huang yufen
  • 3 篇 bertini l.
  • 3 篇 gail mitchell h.
  • 3 篇 beghini m.
  • 3 篇 seleson pablo
  • 2 篇 fedotenkov g. v.
  • 2 篇 alvarez-fernande...
  • 2 篇 mori l. f.
  • 2 篇 pfeiffer ruth m.
  • 2 篇 graubard barry i...
  • 2 篇 rabinskiy l. n.
  • 2 篇 ramachandran rav...
  • 2 篇 shin yei eun
  • 2 篇 fedoseyev v. n.
  • 2 篇 hammoudeh zayd
  • 2 篇 yagnyatinskiy d....
  • 2 篇 dobryanskiy v. n...
  • 2 篇 alvarez-vigil a....
  • 2 篇 mcdonald jb
  • 2 篇 littlewood david...

语言

  • 111 篇 英文
  • 10 篇 其他
检索条件"主题词=Influence functions"
121 条 记 录,以下是1-10 订阅
排序:
Backdoor learning curves: explaining backdoor poisoning beyond influence functions
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2025年 第3期16卷 1779-1804页
作者: Cina, Antonio Emanuele Grosse, Kathrin Vascon, Sebastiano Demontis, Ambra Biggio, Battista Roli, Fabio Pelillo, Marcello Univ Genoa DIBRIS Genoa Italy CaFoscari Univ Venice DAIS Venice Italy Ecole Polytech Fedeerale Lausanne VITA Lab Lausanne Switzerland Univ Cagliari DIEE Cagliari Italy
Backdoor attacks inject poisoning samples during training, with the goal of forcing a machine learning model to output an attacker-chosen class when presented with a specific trigger at test time. Although backdoor at... 详细信息
来源: 评论
Regularization of Hole-Drilling Residual Stress Measurements with Eccentric Holes: An Approach with influence functions
收藏 引用
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE 2024年 第15期33卷 7652-7658页
作者: Beghini, M. Bertini, L. Cococcioni, M. Grossi, T. Santus, C. Benincasa, A. Univ Pisa Dipartimento Ingn Civile & Ind Pisa PI Italy Univ Pisa Dipartimento Ingn Informaz Pisa PI Italy SINT Technol Srl Calenzano FI Italy
The hole-drilling method is one of the most widespread techniques to measure residual stresses. Since the introduction of the Integral Method to evaluate non-uniform stress distributions, there has been a considerable... 详细信息
来源: 评论
Strain concentration factor of heterogeneous materials and analytical influence functions based on Eshelby tensor
收藏 引用
Theoretical & Applied Mechanics Letters 2024年 第4期14卷 306-313页
作者: Shanqiao Huang Zifeng Yuan HEDPS Center for Applied Physics and TechnologyDepartment of Mechanics and Engineering SciencePeking UniversityBeijing 100871China State Key Laboratory for Turbulence and Complex Systems Peking UniversityBeijing 100871China
In this manuscript,Eshelby tensor is employed to assess the strain concentration that arises in the matrix phase at the interface,offering precise values and locations of maximum strain under specific loading conditio... 详细信息
来源: 评论
Revisiting the fragility of influence functions
收藏 引用
NEURAL NETWORKS 2023年 第1期162卷 581-588页
作者: Epifano, Jacob R. Ramachandran, Ravi P. Masino, Aaron J. Rasool, Ghulam Rowan Univ Dept Elect & Comp Engn 201 Mullica Hill Rd Glassboro NJ 08028 USA Univ Penn Dept Biostat Perelman Sch Med InformatEpidemiol 423 Guardian Dr Philadelphia PA 19104 USA H Lee Moffitt Canc Ctr & Res Inst Dept Machine Learning 12902 USF Magnolia Dr Tampa FL 33612 USA
In the last few years, many works have tried to explain the predictions of deep learning models. Few methods, however, have been proposed to verify the accuracy or faithfulness of these explanations. Recently, influen... 详细信息
来源: 评论
Evaluating the Impact of Local Differential Privacy on Utility Loss via influence functions
Evaluating the Impact of Local Differential Privacy on Utili...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Carey, Alycia N. Van, Minh-Hao Wu, Xintao Univ Arkansas Elect Engn & Comp Sci Fayetteville AR 72701 USA
How to properly set the privacy parameter in differential privacy has been an open question in DP research since it was first proposed in 2006. In this work, we demonstrate the ability of influence functions to offer ... 详细信息
来源: 评论
influence functions for a 3D full-space under bilinear stationary loads
收藏 引用
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS 2021年 130卷 286-299页
作者: Romanini, E. Labaki, J. Vasconcelos, A. C. A. Mesquita, E. Fed Univ South Mato Grosso Tres Lagoas MS Brazil Univ Estadual Campinas Sch Mech Engn Campinas Brazil
This manuscript brings the derivation of influence functions for a three-dimensional full-space under bilinearlydistributed time-harmonic loads. The differential equations describing the medium are decomposed in terms... 详细信息
来源: 评论
"How Biased are Your Features?": Computing Fairness influence functions with Global Sensitivity Analysis  23
"How Biased are Your Features?": Computing Fairness Influenc...
收藏 引用
6th ACM Conference on Fairness, Accountability, and Transparency (FAccT)
作者: Ghosh, Bishwamittra Basu, Debabrota Meel, Kuldeep S. Natl Univ Singapore Singapore Singapore Univ Lille Equipe Scool INRIA UMR 9189 CRIStALCNRS Lille France
Fairness in machine learning has attained significant focus due to the widespread application in high-stake decision-making tasks. Unregulated machine learning classifiers can exhibit bias towards certain demographic ... 详细信息
来源: 评论
Efficient Approximate Predictive Inference Under Feedback Covariate Shift with influence functions  12
Efficient Approximate Predictive Inference Under Feedback Co...
收藏 引用
12th Symposium on Conformal and Probabilistic Prediction with Applications (COPA)
作者: Prinster, Drew Saria, Suchi Liu, Anqi Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA
We propose JAWA-FCS, which uses higher-order influence functions to approximate predictive intervals of the (previous) jackknife+ weighted for feedback covariate shift for further computational efficiency (no retraini... 详细信息
来源: 评论
influence functions FOR DIMENSION REDUCTION METHODS
收藏 引用
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY 2021年 第3期103卷 517-519页
作者: Smith, Jodie Ann La Trobe Univ Sch Engn & Math Sci Melbourne Vic 3086 Australia
An abstract is not available for this content so a preview has been provided. As you have access to this article, a PDF of this content is available in through the ‘Save PDF’ action button. <div
来源: 评论
Using influence functions to identify potential improvements for synthetic data generation  4
Using influence functions to identify potential improvements...
收藏 引用
Conference on Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV
作者: Glandon, S. Ross Agrawal, Rajeev Cheng, Jing-Ru C. Maxwell, Andrew US Army Engineer Res & Dev Ctr Vicksburg MS 39180 USA
Computer vision, enabled by artificial intelligence and deep learning, has a nearly limitless number of possible applications, military and civilian. Object detection methods are a particularly notable type of compute... 详细信息
来源: 评论