咨询与建议

限定检索结果

文献类型

  • 15 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 16 篇 工学
    • 16 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 3 篇 电气工程
    • 2 篇 信息与通信工程
    • 1 篇 控制科学与工程
  • 4 篇 理学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 生物学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 21 篇 influence maximi...
  • 4 篇 influence spread
  • 4 篇 social network
  • 3 篇 complex networks
  • 3 篇 social networks
  • 3 篇 viral marketing
  • 3 篇 information diff...
  • 3 篇 robustness
  • 2 篇 community discov...
  • 2 篇 online social ne...
  • 2 篇 simulated anneal...
  • 2 篇 genetic algorith...
  • 2 篇 metaheuristic al...
  • 1 篇 centrality
  • 1 篇 memetic algorith...
  • 1 篇 influential node
  • 1 篇 homomorphic encr...
  • 1 篇 dynamic networks
  • 1 篇 multi-tasking op...
  • 1 篇 privacy protecti...

机构

  • 3 篇 shahid rajaee te...
  • 2 篇 univ kashan fac ...
  • 2 篇 sun yat sen univ...
  • 1 篇 sun yat sen univ...
  • 1 篇 univ isfahan fac...
  • 1 篇 pondicherry univ...
  • 1 篇 shahid rajaee te...
  • 1 篇 anna univ coll e...
  • 1 篇 sarada gangadara...
  • 1 篇 stanford univ mo...
  • 1 篇 naval acad res i...
  • 1 篇 inner mongolia e...
  • 1 篇 islamic azad uni...
  • 1 篇 alzahra univ dep...
  • 1 篇 department of co...
  • 1 篇 ryukoku univ dep...
  • 1 篇 osaka univ inst ...
  • 1 篇 anhui sci & tech...
  • 1 篇 kn toosi univ te...
  • 1 篇 univ shizuoka sc...

作者

  • 5 篇 aghaee zahra
  • 3 篇 kianian sahar
  • 3 篇 wang shuai
  • 3 篇 beni hamid ahmad...
  • 2 篇 chen minghao
  • 2 篇 bouyer asgarali
  • 2 篇 cai shun
  • 2 篇 vahidipour mehdi
  • 1 篇 liu shih-jui
  • 1 篇 tang ke
  • 1 篇 wang jing
  • 1 篇 ghasemi mohammad...
  • 1 篇 malek mohammad r...
  • 1 篇 kan jia-qian
  • 1 篇 zhang kaiqi
  • 1 篇 zhang shaofeng
  • 1 篇 claramunt christ...
  • 1 篇 hongfang pan
  • 1 篇 ma xiao-jing
  • 1 篇 chun-wei tsai

语言

  • 19 篇 英文
  • 2 篇 其他
检索条件"主题词=Influence maximization problem"
21 条 记 录,以下是11-20 订阅
排序:
Benefits of Bias in Crawl-Based Network Sampling for Identifying Key Node Set
收藏 引用
IEEE ACCESS 2020年 8卷 75370-75380页
作者: Tsugawa, Sho Ohsaki, Hiroyuki Univ Tsukuba Fac Engn Informat & Syst Tsukuba Ibaraki 3058573 Japan Kwansei Gakuin Univ Sch Sci & Technol Sanda 6691337 Japan
We study the problem of identifying a set of key nodes from a network when limited knowledge about its structure is available. Most studies assume complete knowledge of the given network when identifying a set of key ... 详细信息
来源: 评论
influence maximization algorithm based on reducing search space in the social networks
收藏 引用
SN APPLIED SCIENCES 2020年 第12期2卷 1-14页
作者: Aghaee, Zahra Kianian, Sahar Shahid Rajaee Teacher Training Univ SRTTU Fac Comp Engn Tehran Iran
The influence maximization problem in social networks is an optimization problem in viral marketing. This problem is concerned with identifying a certain number of people with the most influence in the social network ... 详细信息
来源: 评论
Efficient influence spread estimation for influence maximization
收藏 引用
SOCIAL NETWORK ANALYSIS AND MINING 2020年 第1期10卷 1-21页
作者: Aghaee, Zahra Kianian, Sahar Shahid Rajaee Teacher Training Univ Dept Comp Sci Tehran Iran
Word-of-Mouth promotion is among the effective methods of marketing and is highly regarded by many commercial companies. This type of marketing is mapped on the influence maximization problem (IMP) in the social netwo... 详细信息
来源: 评论
IMT: Selection of Top-k Nodes based on the Topology Structure in Social Networks  6
IMT: Selection of Top-k Nodes based on the Topology Structur...
收藏 引用
6th International Conference on Web Research (ICWR)
作者: Beni, Hamid Ahmadi Aghaee, Zahra Bouyer, Asgarali Vahidipour, Mehdi Azarbaijan Shahid Madani Univ Tabriz Dept Informat Technol & Commun Tabriz Iran Shahid Rajaee Teacher Training Univ SRTTU Fac Comp Engn Tehran Iran Univ Kashan Fac Elect & Comp Engn Dept Comp Kashan Iran
influence maximization is a problem based on diffusion and probability in social networks with the aim of finding the least k node with the most influence. These nodes play an essential role in the diffusion process. ... 详细信息
来源: 评论
Socio-spatial influence maximization in location-based social networks
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2019年 101卷 304-314页
作者: Hosseinpour, Mohammad Malek, Mohammad Reza Claramunt, Christophe KN Toosi Univ Technol Fac Geodesy & Geomat Engn Dept GIS Tehran Iran Naval Acad Res Inst BP 600 F-29240 Brest France
Identifying influential nodes in social networks is a key issue in many domains such as sociology, economy, biology, and marketing. A common objective when studying such networks is to find the minimum number of nodes... 详细信息
来源: 评论
SEIM: Search economics for influence maximization in online social networks
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2019年 93卷 1055-1064页
作者: Tsai, Chun-Wei Liu, Shih-Jui Natl Chung Hsing Univ Dept Comp Sci & Engn Taichung Taiwan
The influence of online social networks (OSN), which can be regarded as part of our life, is evident today. As expected, a great deal of useful information about the humans is hidden in the data, such as interpersonal... 详细信息
来源: 评论
CNLPSO-SL: A two-layered method for identifying influential nodes in social networks
收藏 引用
INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS 2018年 第2期22卷 109-123页
作者: Pourkazemi, Maryam Keyvanpour, Mohammadreza Alzahra Univ Dept Comp Engn Specialized Lab Data Min Tehran Iran Alzahra Univ Dept Comp Engn Tehran Iran
In networks, dynamic phenomena such as opinions, behaviors, and information are propagated through connections between entities. Indeed, one of the main issues about a dynamic process is to find a set of individuals w... 详细信息
来源: 评论
Maximizing influence in a social network: Improved results using a genetic algorithm
收藏 引用
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS 2017年 478卷 20-30页
作者: Zhang, Kaiqi Du, Haifeng Feldman, Marcus W. Xi An Jiao Tong Univ Sch Management Xian 710049 Shanxi Province Peoples R China Xi An Jiao Tong Univ Ctr Adm & Complex Sci Xian 710049 Shanxi Province Peoples R China Stanford Univ Morrison Inst Populat & Resource Studies Stanford CA 94305 USA
The influence maximization problem focuses on finding a small subset of nodes in a social network that maximizes the spread of influence. While the greedy algorithm and some improvements to it have been applied to sol... 详细信息
来源: 评论
Social influence determination on big data streams in an online social network
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2017年 第21期76卷 22133-22167页
作者: Kumaran, P. Chitrakala, S. Anna Univ Coll Engn Dept Comp Sci & Engn Madras Tamil Nadu India
Social networks have become a good place to promote products and also to campaign for causes. Maximizing the spread of information in an online social network at a least cost has attracted the attention of publicist&#... 详细信息
来源: 评论
Extended methods for influence maximization in dynamic networks
收藏 引用
Computational Social Networks 2018年 第1期5卷 8页
作者: Murata, Tsuyoshi Koga, Hokuto Department of Computer Science School of Computing Tokyo Institute of Technology W8-59 2-12-1 Ookayama Meguro Tokyo 152-8552 Japan
Background: The process of rumor spreading among people can be represented as information diffusion in social network. The scale of rumor spread changes greatly depending on starting nodes. If we can select nodes that... 详细信息
来源: 评论