咨询与建议

限定检索结果

文献类型

  • 98 篇 期刊文献
  • 87 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 189 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 172 篇 工学
    • 121 篇 计算机科学与技术...
    • 93 篇 电气工程
    • 27 篇 软件工程
    • 12 篇 机械工程
    • 12 篇 控制科学与工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 信息与通信工程
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 测绘科学与技术
    • 1 篇 地质资源与地质工...
  • 45 篇 医学
    • 33 篇 临床医学
    • 12 篇 特种医学
    • 4 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 30 篇 理学
    • 18 篇 物理学
    • 6 篇 生物学
    • 4 篇 化学
    • 2 篇 地球物理学
    • 2 篇 系统科学
    • 1 篇 数学
    • 1 篇 地质学
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 2 篇 艺术学
    • 2 篇 设计学(可授艺术学...
  • 1 篇 农学

主题

  • 189 篇 interactive imag...
  • 21 篇 image segmentati...
  • 20 篇 graph cut
  • 10 篇 graph cuts
  • 8 篇 deep learning
  • 7 篇 task analysis
  • 7 篇 semi-supervised ...
  • 6 篇 superpixel
  • 6 篇 foreground extra...
  • 6 篇 image editing
  • 5 篇 image foresting ...
  • 5 篇 feature extracti...
  • 4 篇 alpha matting
  • 4 篇 image edge detec...
  • 4 篇 object cutout
  • 4 篇 geodesic distanc...
  • 4 篇 object segmentat...
  • 4 篇 convolutional ne...
  • 4 篇 training
  • 3 篇 region merging

机构

  • 10 篇 nanjing univ sci...
  • 5 篇 nanyang technol ...
  • 3 篇 nanjing univ pos...
  • 3 篇 astar inst infoc...
  • 3 篇 microsoft res ca...
  • 3 篇 changsha univ sc...
  • 3 篇 huazhong univ sc...
  • 3 篇 nanjing univ sci...
  • 3 篇 hunan univ coll ...
  • 2 篇 uppsala univ ctr...
  • 2 篇 us naval res lab...
  • 2 篇 offis inst infor...
  • 2 篇 univ missouri de...
  • 2 篇 nanjing univ sci...
  • 2 篇 hong kong univ s...
  • 2 篇 microsoft res as...
  • 2 篇 xidian univ sch ...
  • 2 篇 hunan normal uni...
  • 2 篇 shanghai univ sh...
  • 2 篇 shanghai univ sc...

作者

  • 10 篇 wang tao
  • 8 篇 sun quansen
  • 6 篇 li qiaoliang
  • 6 篇 ji zexuan
  • 4 篇 zheng jianmin
  • 4 篇 cai jianfei
  • 4 篇 chen qiang
  • 3 篇 ge qi
  • 3 篇 nie feiping
  • 3 篇 qu shaojun
  • 3 篇 ourselin sebasti...
  • 3 篇 fu peng
  • 3 篇 wang guotai
  • 3 篇 wei yunchao
  • 3 篇 aertsen michael
  • 3 篇 vercauteren tom
  • 3 篇 tao wenbing
  • 3 篇 deprest jan
  • 3 篇 yang jian
  • 3 篇 li zhiyong

语言

  • 186 篇 英文
  • 2 篇 中文
  • 1 篇 其他
检索条件"主题词=Interactive image segmentation"
189 条 记 录,以下是101-110 订阅
排序:
Guiding image segmentation on the Fly: interactive segmentation From a Feedback Control Perspective
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2018年 第10期63卷 3276-3289页
作者: Zhu, Liangjia Karasev, Peter Kolesov, Ivan Sandhu, Romeil Tannenbaum, Allen SUNY Stony Brook Dept Comp Sci & Appl Math Stat Stony Brook NY 11794 USA Georgia Inst Technol Atlanta GA 30332 USA Agilent Technol Santa Clara CA 95051 USA
image segmentation is a fundamental problem in computational vision and medical imaging. Designing a generic automated method that works for various objects and imaging modalities is a formidable task. Instead of prop... 详细信息
来源: 评论
Fast interactive segmentation algorithm of image sequences based on relative fuzzy connectedness
收藏 引用
Journal of Systems Engineering and Electronics 2005年 第4期16卷 750-755页
作者: Tian Chunna Gao Xinbo School of Electronic Engineering Xidian Univ. Xi'an 710071 P. R. China
A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the seg... 详细信息
来源: 评论
A Novel Level Set Model for image segmentation with interactive Label Regularization Term  2nd
A Novel Level Set Model for Image Segmentation with Interact...
收藏 引用
2nd CCF Chinese Conference on Computer Vision (CCCV)
作者: Tan, Huang Chen, Ming Li, Qiaoliang Qu, Shaojun Hunan Normal Univ Coll Math & Comp Sci Minist Educ China Key Lab High Performance Comp & Stochast Informat Changsha 410081 Hunan Peoples R China
We propose an interactive level set segmentation method with a novel user's label regularization term. This new edge-based model can force the evolution of level set function to follow the hard constraints given b... 详细信息
来源: 评论
Progressive medical image annotation with convolutional neural network-based interactive segmentation method
Progressive medical image annotation with convolutional neur...
收藏 引用
Conference on Medical Imaging - image Processing
作者: Bai, Yunkun Sun, Guangmin Li, Yu Le Shen Li Zhang Beijing Univ Technol Fac Informat Technol 100 PingLeYuan Beijing 100124 Peoples R China Tsinghua Univ Minist Educ Key Lab Particle & Radiat Imaging Beijing Peoples R China Tsinghua Univ Dept Engn Phys Beijing 100084 Peoples R China
Deep learning based segmentation algorithms for medical image require massive training datasets with accurate annotations, which is costly since it takes much human effort to manually labeling from scratch. Therefore,... 详细信息
来源: 评论
interactive Deep Editing Framework for Medical image segmentation  1
收藏 引用
10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International Conference on Medical image Computing and Computer-Assisted Intervention (MICCAI)
作者: Zhou, Bowei Chen, Li Wang, Zhao Tsinghua Univ Sch Software Beijing 100084 Peoples R China Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing Peoples R China
Deep neural networks exhibit superior performance in dealing with segmentation of 3D medical images. However, the accuracy of segmentation results produced by fully automatic algorithms is insufficiently high due to t... 详细信息
来源: 评论
interactive Skin Lesion segmentation Considering Behavioral Preference in Clicking
收藏 引用
IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING 2025年 第1期20卷 89-100页
作者: Zhao, Shuofeng Gu, Chunzhi Yu, Jun Akashi, Takuya Zhang, Chao Univ Fukui Dept Engn 3-9-1 Bunkyo Fukui Fukui 9502181 Japan Toyohashi Univ Technol Dept Comp Sci & Engn 1-1 HibarigaokaTempaku Cho Toyohashi Aichi 4418580 Japan Niigata Univ Inst Sci & Technol 8050 Ikarashi 2 No ChoNishi Ku Niigata Niigata 9502181 Japan Okayama Univ Sch Engn 2-1-1 TsushimanakaKita Ku Okayama 7008530 Japan Univ Toyama Fac Engn 3190 Gofuku Toyama 9308555 Japan
interactive Medical image segmentation (IMIS) aims to improve the accuracy of image segmentation by incorporating human guidance, primarily through click-based interactions. IMIS for skin lesion segmentation is a chal... 详细信息
来源: 评论
interactive Exemplar-based segmentation Toolkit for Biomedical image Analysis  12
Interactive Exemplar-based Segmentation Toolkit for Biomedic...
收藏 引用
IEEE 12th International Symposium on Biomedical Imaging
作者: Li, Xiang Zhou, Zhi Keller, Philipp Zeng, Hongkui Liu, Tianming Peng, Hanchuan Univ Georgia Dept Comp Sci Cort Architecture Imaging & Discovery Lab Athens GA 30602 USA Univ Georgia Bioimaging Res Ctr Athens GA 30602 USA Allen Inst Brain Sci Seattle WA 98109 USA HHMI Janelia Farm Res Campus Ashburn VA USA
In the field of biomedical imaging analysis on single-cell level, reliable and fast segmentation of the cell nuclei from the background on three-dimensional images is highly needed for the further analysis. In this wo... 详细信息
来源: 评论
interactive fuzzy connectedness image segmentation for neonatal brain MR image segmentation
Interactive fuzzy connectedness image segmentation for neona...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Kobashi, Syoji Kuramoto, Kei Hata, Yutaka Univ Hyogo Grad Sch Engn Himeji Initiat Computat Med & Hlth Technol Himeji Hyogo 6712201 Japan
image segmentation plays a fundamental work to analyze medical images. Although many literatures studied automated image segmentation, it is still difficult to segment region-of-interest in any kind of images. Thus, m... 详细信息
来源: 评论
interactive RGB-D image segmentation Using Hierarchical Graph Cut and Geodesic Distance  16th
Interactive RGB-D Image Segmentation Using Hierarchical Grap...
收藏 引用
16th Pacific-Rim Conference on Multimedia (PCM)
作者: Ge, Ling Ju, Ran Ren, Tongwei Wu, Gangshan Nanjing Univ Collaborat Innovat Ctr Novel Software Technol & I State Key Lab Novel Software Technol Nanjing 210023 Jiangsu Peoples R China
In this paper, we propose a novel interactive image segmentation method for RGB-D images using hierarchical Graph Cut. Considering the characteristics of RGB channels and depth channel in RGB-D image, we utilize Eucli... 详细信息
来源: 评论
FISMI-DRL: A Framework for interactive segmentation of Medical image Based On Deep Reinforcement Learning
FISMI-DRL: A Framework for Interactive Segmentation of Medic...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Qian, Chen Yang, Hao Li, Jiyun School of Computer Sci. & Tech. Donghua University Shanghai China
At present, deep learning-based medical image segmentation algorithms have achieved fast and accurate semantic segmentation. However, their segmentation accuracy is still challenging to reach the clinical use standard... 详细信息
来源: 评论