咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 理学
    • 7 篇 数学
    • 4 篇 物理学
  • 10 篇 工学
    • 3 篇 机械工程
    • 3 篇 电气工程
    • 3 篇 计算机科学与技术...
    • 2 篇 力学(可授工学、理...
    • 2 篇 信息与通信工程
    • 2 篇 船舶与海洋工程
    • 2 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 电子科学与技术(可...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 14 篇 iteratively rewe...
  • 3 篇 nonconvex regula...
  • 3 篇 kurdyka-lojasiew...
  • 2 篇 linear inverse p...
  • 2 篇 alternating dire...
  • 2 篇 force reconstruc...
  • 2 篇 nonconvex optimi...
  • 1 篇 distributed opti...
  • 1 篇 extrapolation
  • 1 篇 l(p) regularizat...
  • 1 篇 nonsmooth noncon...
  • 1 篇 proximal operato...
  • 1 篇 tuckey's biweigh...
  • 1 篇 multiplicative r...
  • 1 篇 block coordinate...
  • 1 篇 proximal gradien...
  • 1 篇 impact force ide...
  • 1 篇 incremental meth...
  • 1 篇 bregman distance
  • 1 篇 nesterov's accel...

机构

  • 2 篇 conservatoire na...
  • 1 篇 natl univ def te...
  • 1 篇 univ freiburg bi...
  • 1 篇 univ washington ...
  • 1 篇 seoul natl univ ...
  • 1 篇 xiangtan univ sc...
  • 1 篇 carnegie mellon ...
  • 1 篇 centralesupelec ...
  • 1 篇 chungnam natl un...
  • 1 篇 ocean univ china...
  • 1 篇 xi an jiao tong ...
  • 1 篇 univ freiburg de...
  • 1 篇 ait austrian ins...
  • 1 篇 natl univ def te...
  • 1 篇 chongqing normal...
  • 1 篇 graz univ techno...
  • 1 篇 hankuk univ fore...
  • 1 篇 ho chi minh city...
  • 1 篇 shanghaitech uni...
  • 1 篇 state key lab mf...

作者

  • 2 篇 kang myeongmin
  • 2 篇 sun tao
  • 2 篇 aucejo m.
  • 2 篇 de smet o.
  • 1 篇 liu junjiang
  • 1 篇 wang jiashan
  • 1 篇 liu jinxin
  • 1 篇 yang zhibo
  • 1 篇 liu feng
  • 1 篇 pock thomas
  • 1 篇 zhu wei
  • 1 篇 dosovitskiy alex...
  • 1 篇 deng xiaoge
  • 1 篇 cheng lizhi
  • 1 篇 jiang baicheng
  • 1 篇 jiang hao
  • 1 篇 zhang jie
  • 1 篇 pascal frederic
  • 1 篇 wang hao
  • 1 篇 kang myungjoo

语言

  • 13 篇 英文
  • 1 篇 中文
检索条件"主题词=Iteratively reweighted algorithm"
14 条 记 录,以下是1-10 订阅
排序:
On a general iteratively reweighted algorithm for solving force reconstruction problems
收藏 引用
JOURNAL OF SOUND AND VIBRATION 2019年 458卷 376-388页
作者: Aucejo, M. De Smet, O. Conservatoire Natl Arts & Metiers Struct Mech & Coupled Syst Lab 2 Rue Conte F-75003 Paris France
The multiplicative l(q)-regularization has been recently introduced in structural dynamics for solving force reconstruction problems. Practically, the resolution of this regularization strategy requires the implementa... 详细信息
来源: 评论
Global convergence of block Bregman proximal iteratively reweighted algorithm with extrapolation
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2024年 1-30页
作者: Zhang, Jie Yang, Xinmin Chongqing Univ Posts & Telecommun Sch Sci Chonngqing 400065 Peoples R China Chongqing Normal Univ Sch Math Sci Chongqing Peoples R China
In this paper, we propose a Bregman proximal iteratively reweighted algorithm with extrapolation based on block coordinate update aimed at solving a class of optimization problems which is the sum of a smooth possibly... 详细信息
来源: 评论
On iteratively reweighted algorithms for Nonsmooth Nonconvex Optimization in Computer Vision
收藏 引用
SIAM JOURNAL ON IMAGING SCIENCES 2015年 第1期8卷 331-372页
作者: Ochs, Peter Dosovitskiy, Alexey Brox, Thomas Pock, Thomas Univ Freiburg Dept Comp Sci D-79110 Freiburg Germany Univ Freiburg BIOSS Ctr Biol Signalling Studies D-79110 Freiburg Germany Graz Univ Technol Inst Comp Graph & Vis A-8010 Graz Austria AIT Austrian Inst Technol GmbH Digital Safety & Secur Dept A-1220 Vienna Austria
Natural image statistics indicate that we should use nonconvex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge of optimization.... 详细信息
来源: 评论
An accelerated IRNN-iteratively reweighted Nuclear Norm algorithm for nonconvex nonsmooth low-rank minimization problems
收藏 引用
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 2021年 396卷 113602-113602页
作者: Phan, Duy Nhat Nguyen, Thuy Ngoc Ho Chi Minh City Univ Educ Dept Math & Informat Ho Chi Minh City Vietnam Carnegie Mellon Univ Dynam Decis Making Lab Pittsburgh PA 15213 USA
Low-rank minimization problems arise in numerous important applications such as recommendation systems, machine learning, network analysis, and so on. The problems however typically consist of minimizing a sum of a sm... 详细信息
来源: 评论
Approximate versions of proximal iteratively reweighted algorithms including an extended IP-ICMM for signal and image processing problems
收藏 引用
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 2020年 376卷 112837-000页
作者: Kang, Myeongmin Chungnam Natl Univ Dept Math Daejeon South Korea
iteratively reweighted algorithms are popular methods for solving nonconvex unconstrained minimization problems. Applications are notably mathematical models in image processing or signal processing. They often have a... 详细信息
来源: 评论
iteratively Linearized reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2018年 第20期66卷 5380-5391页
作者: Sun, Tao Jiang, Hao Cheng, Lizhi Zhu, Wei Natl Univ Def Technol Dept Math Changsha 410073 Hunan Peoples R China Natl Univ Def Technol Coll Comp Changsha 410073 Hunan Peoples R China Natl Univ Def Technol State Key Lab High Performance Computat Changsha 410073 Hunan Peoples R China Xiangtan Univ Sch Math & Computat Sci Hunan Key Lab Computat & Simulat Sci & Engn Xiangtan 411105 Peoples R China
In this paper, we consider solving a class of nonconvex and nonsmooth problems frequently appearing in signal processing andmachine learning research. The traditional alternating directionmethod of multipliers encount... 详细信息
来源: 评论
iteratively reweighted GROUP LASSO BASED ON LOG-COMPOSITE REGULARIZATION
收藏 引用
SIAM JOURNAL ON SCIENTIFIC COMPUTING 2021年 第5期43卷 S655-S678页
作者: Ke, Chengyu Ahn, Miju Shin, Sunyoung Lou, Yifei Southern Methodist Univ Dept Engn Management Informat & Syst Dallas TX 75205 USA Univ Texas Dallas Dept Math Sci Richardson TX 75080 USA
The paper considers supervised learning problems of labeled data with grouped input features. The groups are nonoverlapped such that the model coefficients corresponding to the input features form disjoint groups. The... 详细信息
来源: 评论
Convergence rate analysis of proximal iteratively reweighted l1 methods for lp regularization problems
收藏 引用
OPTIMIZATION LETTERS 2023年 第2期17卷 413-435页
作者: Wang, Hao Zeng, Hao Wang, Jiashan ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China Univ Washington Dept Math Seattle WA 98195 USA
In this paper, we focus on the local convergence rate analysis of the proximal iteratively reweighted l(1) algorithms for solving l(p) regularization problems, which are widely applied for inducing sparse solutions. W... 详细信息
来源: 评论
Total Generalized Variation Based Denoising Models for Ultrasound Images
收藏 引用
JOURNAL OF SCIENTIFIC COMPUTING 2017年 第1期72卷 172-197页
作者: Kang, Myeongmin Kang, Myungjoo Jung, Miyoun Seoul Natl Univ Dept Math Sci Seoul South Korea Hankuk Univ Foreign Studies Dept Math Yongin South Korea
In this paper, we introduce a class of variational models for the restoration of ultrasound images corrupted by noise. The proposed models involve the convex or nonconvex total generalized variation regularization. Th... 详细信息
来源: 评论
An enhanced sparse regularization method for impact force identification
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2019年 126卷 341-367页
作者: Qiao, Baijie Liu, Junjiang Liu, Jinxin Yang, Zhibo Chen, Xuefeng State Key Lab Mfg Syst Engn Xian 710061 Shaanxi Peoples R China Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Shaanxi Peoples R China
The standard sparse regularization method based on l(1)-norm minimization for impact force identification has already proved to be an interesting alternative to the classical regularization method based on l(2)-norm m... 详细信息
来源: 评论