咨询与建议

限定检索结果

文献类型

  • 658 篇 会议
  • 577 篇 期刊文献
  • 8 篇 学位论文

馆藏范围

  • 1,243 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,050 篇 工学
    • 641 篇 计算机科学与技术...
    • 360 篇 电气工程
    • 147 篇 信息与通信工程
    • 133 篇 控制科学与工程
    • 109 篇 软件工程
    • 71 篇 机械工程
    • 44 篇 仪器科学与技术
    • 42 篇 电子科学与技术(可...
    • 39 篇 石油与天然气工程
    • 38 篇 环境科学与工程(可...
    • 29 篇 交通运输工程
    • 27 篇 材料科学与工程(可...
    • 25 篇 动力工程及工程热...
    • 24 篇 测绘科学与技术
    • 21 篇 生物医学工程(可授...
    • 16 篇 网络空间安全
    • 13 篇 土木工程
  • 216 篇 理学
    • 75 篇 数学
    • 46 篇 统计学(可授理学、...
    • 34 篇 物理学
    • 32 篇 生物学
    • 23 篇 化学
    • 22 篇 地球物理学
    • 18 篇 系统科学
  • 207 篇 管理学
    • 191 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 67 篇 医学
    • 47 篇 临床医学
  • 43 篇 经济学
    • 35 篇 应用经济学
  • 25 篇 农学
    • 16 篇 作物学
  • 22 篇 教育学
    • 15 篇 教育学
  • 8 篇 法学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 1,243 篇 k-means algorith...
  • 198 篇 clustering
  • 85 篇 cluster analysis
  • 82 篇 data mining
  • 47 篇 machine learning
  • 39 篇 clustering algor...
  • 35 篇 image segmentati...
  • 33 篇 genetic algorith...
  • 25 篇 clustering analy...
  • 21 篇 data clustering
  • 21 篇 particle swarm o...
  • 19 篇 clustering algor...
  • 18 篇 unsupervised lea...
  • 16 篇 algorithms
  • 16 篇 genetic algorith...
  • 16 篇 classification
  • 14 篇 customer segment...
  • 14 篇 big data
  • 14 篇 optimization
  • 14 篇 cluster

机构

  • 6 篇 hubei univ techn...
  • 5 篇 univ piraeus dep...
  • 4 篇 univ zabol fac w...
  • 4 篇 wuhan univ techn...
  • 3 篇 univ tokyo ctr s...
  • 3 篇 univ chinese aca...
  • 3 篇 indian stat inst...
  • 3 篇 iran univ sci & ...
  • 3 篇 chinese acad sci...
  • 3 篇 univ s alabama d...
  • 3 篇 xidian univ eled...
  • 3 篇 wright state uni...
  • 3 篇 charles sturt un...
  • 2 篇 univ elect sci &...
  • 2 篇 school of automa...
  • 2 篇 tokyo inst techn...
  • 2 篇 tsinghua univ el...
  • 2 篇 qilu univ techno...
  • 2 篇 harbin inst tech...
  • 2 篇 china electric p...

作者

  • 5 篇 bandyopadhyay s
  • 5 篇 maulik u
  • 5 篇 virvou maria
  • 5 篇 troussas christo...
  • 4 篇 kuo r. j.
  • 4 篇 ye zhiwei
  • 3 篇 jain p. k.
  • 3 篇 alsultan ks
  • 3 篇 chen yan
  • 3 篇 yiping jiao
  • 3 篇 islam md zahidul
  • 3 篇 yildirim pinar
  • 3 篇 liu chuan
  • 3 篇 sugasawa shonosu...
  • 3 篇 poli lorenzo
  • 3 篇 bagirov adil m.
  • 3 篇 xin binjie
  • 3 篇 wang li
  • 3 篇 li yan
  • 3 篇 chen yang

语言

  • 1,197 篇 英文
  • 31 篇 其他
  • 10 篇 中文
  • 3 篇 法文
  • 3 篇 土耳其文
检索条件"主题词=K-means algorithm"
1243 条 记 录,以下是81-90 订阅
排序:
A Novel Genetic algorithm Based k-means algorithm for Cluster Analysis  3rd
A Novel Genetic Algorithm Based <i>k</i>-means Algorithm for...
收藏 引用
3rd International Conference on Advanced Machine Learning Technologies and Applications (AMLTA)
作者: El-Shorbagy, M. A. Ayoub, A. Y. El-Desoky, I. M. Mousa, A. A. Menoufia Univ Fac Engn Dept Basic Engn Sci Shibin Al Kawm Egypt Taif Univ Fac Sci Math & Stat Dept At Taif Saudi Arabia
This paper proposed a novel genetic algorithm (GA) based k-means algorithm to perform cluster analysis. In the proposed approach, the population of GA is initialized by k-means algorithm. Then, the GA operators are ap... 详细信息
来源: 评论
A Hybrid CRO-k-means algorithm for Data Clustering  1
收藏 引用
1st International Conference on Computational Intelligence in Data Mining (ICCIDM)
作者: Panigrahi, Sibarama Rath, Balaram kumar, P. Santosh Natl Inst Sci & Technol Berhampur 761008 Odisha India MITS Engn Coll MIRC Lab Rayagada 765017 Odisha India
Over the past few decades clustering algorithms have been used in diversified fields of engineering and science. Out of various methods, k-means algorithm is one of the most popular clustering algorithms. However, k-M... 详细信息
来源: 评论
An Improved k-means algorithm for Clustering Using Entropy Weighting Measures
An Improved k-means Algorithm for Clustering Using Entropy W...
收藏 引用
7th World Congress on Intelligent Control and Automation
作者: Li, Taoying Chen, Yan Dalian Maritime Univ Sch Econ & Management Dalian 116026 Peoples R China
The objective of traditional k-means algorithm is to make the distances of objects in the same cluster as small as possible, but another objective that the distances of objects from different clusters is not taken int... 详细信息
来源: 评论
The SkM algorithm: A k-means algorithm for Clustering Sequential Data
收藏 引用
11th Ibero-American Conference on Artificial Intelligence
作者: Dias, Jose G. Cortinhal, Maria Joao ISCTE Business Sch Dept Quantitat Methods P-1649026 Lisbon Portugal
This paper introduces a new algorithm for clustering sequential data. The SkM algorithm is a k-means-type algorithm suited for identifying groups of objects with similar trajectories and dynamics. We provide a simulat... 详细信息
来源: 评论
A Density-Based Method for Selection of the Initial Clustering Centers of k-means algorithm  2
A Density-Based Method for Selection of the Initial Clusteri...
收藏 引用
2017 IEEE 第2届先进信息技术,电子与自动化控制国际会议(IAEAC 2017)
作者: Xin Du Ning Xu Cailan Zhou Shihui Xiao School of Computer Science and Technology Wuhan University of Technology School of Information Engineering Wuhan University of Technology
The initial clustering centers of traditional k-means algorithm are randomly generated from a data set,clustering effect is not very stable. Aimed at this problem, this paper puts forward a kind of op
来源: 评论
Research on improved RFM customer segmentation model based on k-means algorithm  5
Research on improved RFM customer segmentation model based o...
收藏 引用
5th International Conference on Computational Intelligence and Applications (ICCIA)
作者: Huang, Yong Zhang, Mingzhen He, Yue Sichuan Univ Business Sch Chengdu Peoples R China
The RFM model used for customer segmentation in the traditional retail industry is not suitable for the industry with distinct attributes of social groups, so the RFMC model is created by introducing the parameter C o... 详细信息
来源: 评论
PSO-based procedure to find number of clusters and better initial centroids for k-means algorithm: Image segmentation as case study  6
PSO-based procedure to find number of clusters and better in...
收藏 引用
6th International Conference on Pattern Recognition and Image Analysis (IPRIA)
作者: Zarei, M. Alizadeh Nickfarjam, A. M. Islamic Azad Univ Kashan Dept Comp Engn Fac Elect & Comp Engn Kashan Iran Kashan Univ Med Sci Dept Hlth Informat Management & Technol Kashan Iran Kashan Univ Med Sci Res Ctr Hlth Informat Management Kashan Iran
In this paper, we propose a combination of k-means algorithm and Particle Swarm Optimization (PSO) method. The k-means algorithm is utilized for data clustering. On one hand, the number of clusters (k) should be deter... 详细信息
来源: 评论
A Review on Outlier Detection Techniques on Data Stream by Using Different Approaches of k-means algorithm  2
A Review on Outlier Detection Techniques on Data Stream by U...
收藏 引用
International Conference on Advances in Computer Engineering and Applications (ICACEA)
作者: Chauhan, Prashant Shukla, Madhu Marwadi Educ Fdn Grp Inst Dept Comp Engn Rajkot 360003 Gujarat India
Data Stream mining has gained attraction from many researchers as there is need to mine large dataset which pose different challenges for researchers. Stream data is different compared to normal data as they are conti... 详细信息
来源: 评论
Identification of Artifacts in Scenery Images using Color and Line Information by RBF Network - Segmentation by k-means algorithm and Edge Information
Identification of Artifacts in Scenery Images using Color an...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics (SMC)
作者: Sakashita, Yuta Osana, Yuko Tokyo Univ Technol Hachioji Tokyo Japan
In this paper, we propose a new image segmentation method based on k-means algorithm and edge information, and identification of artifacts in scenery images using color and line information by Radial Basis Function (R... 详细信息
来源: 评论
Evaluation of Class Decomposition based on Clustering Validity and k-means algorithm  21
Evaluation of Class Decomposition based on Clustering Validi...
收藏 引用
21st International Arab Conference on Information Technology (ACIT)
作者: Sowan, Bilal Matar, Nasim Omar, Firas Alauthman, Mohammad Eshtay, Mohammed Univ Petra Dept Business Intelligence & Data Analyt Amman Jordan Univ Petra Dept E Business & Commerce Amman Jordan Univ Petra Dept Informat Secur Amman Jordan LTUC Dept ASAC Amman Jordan
A class decomposition is one of the possible solutions and the most important factors of success for the improvement of classification performance. The idea is to transform a dataset by categorizing each class label i... 详细信息
来源: 评论