咨询与建议

限定检索结果

文献类型

  • 226 篇 期刊文献
  • 168 篇 会议
  • 3 篇 学位论文
  • 1 册 图书

馆藏范围

  • 398 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 348 篇 工学
    • 171 篇 计算机科学与技术...
    • 123 篇 电气工程
    • 53 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 36 篇 机械工程
    • 34 篇 软件工程
    • 26 篇 石油与天然气工程
    • 24 篇 电子科学与技术(可...
    • 23 篇 仪器科学与技术
    • 23 篇 材料科学与工程(可...
    • 15 篇 动力工程及工程热...
    • 15 篇 土木工程
    • 14 篇 交通运输工程
    • 14 篇 环境科学与工程(可...
    • 9 篇 力学(可授工学、理...
    • 6 篇 水利工程
    • 6 篇 测绘科学与技术
    • 6 篇 生物医学工程(可授...
    • 6 篇 网络空间安全
    • 5 篇 建筑学
  • 82 篇 理学
    • 27 篇 数学
    • 20 篇 物理学
    • 12 篇 化学
    • 12 篇 生物学
    • 9 篇 地球物理学
    • 7 篇 统计学(可授理学、...
  • 60 篇 管理学
    • 51 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 20 篇 医学
    • 14 篇 临床医学
  • 12 篇 经济学
    • 9 篇 应用经济学
  • 6 篇 农学
  • 3 篇 教育学
  • 2 篇 法学
  • 1 篇 军事学

主题

  • 398 篇 k-means clusteri...
  • 17 篇 data mining
  • 15 篇 pattern clusteri...
  • 11 篇 feature extracti...
  • 9 篇 machine learning
  • 9 篇 clustering algor...
  • 9 篇 genetic algorith...
  • 8 篇 image segmentati...
  • 8 篇 principal compon...
  • 7 篇 big data
  • 7 篇 support vector m...
  • 6 篇 clustering
  • 6 篇 rbf neural netwo...
  • 5 篇 image classifica...
  • 5 篇 accuracy
  • 5 篇 cloud computing
  • 5 篇 cluster analysis
  • 5 篇 data analysis
  • 4 篇 object detection
  • 4 篇 initial cluster ...

机构

  • 2 篇 qilu univ techno...
  • 2 篇 st marys univ de...
  • 2 篇 southeast univ s...
  • 2 篇 cent univ financ...
  • 2 篇 harbin engn univ...
  • 2 篇 tianjin universi...
  • 2 篇 northwestern pol...
  • 2 篇 northwest a&f un...
  • 2 篇 north china elec...
  • 2 篇 northwest a&f un...
  • 2 篇 china univ geosc...
  • 2 篇 minist agr key l...
  • 2 篇 school of inform...
  • 2 篇 china agr univ c...
  • 2 篇 beijing universi...
  • 2 篇 tongji univ sch ...
  • 2 篇 yangtze univ key...
  • 1 篇 cent univ financ...
  • 1 篇 yantai univ coll...
  • 1 篇 univ sci & techn...

作者

  • 4 篇 he dongjian
  • 3 篇 xu xin
  • 3 篇 song huaibo
  • 3 篇 li wei
  • 2 篇 wei hu
  • 2 篇 peng chong
  • 2 篇 shen wei
  • 2 篇 zhang chao
  • 2 篇 xu chuanbo
  • 2 篇 wang linlin
  • 2 篇 yao rui
  • 2 篇 chen gang
  • 2 篇 sun jian
  • 2 篇 li yue
  • 2 篇 lu shufeng
  • 2 篇 aref mohamed his...
  • 2 篇 geng yushui
  • 2 篇 wang dandan
  • 2 篇 miao duoqian
  • 2 篇 wang yang

语言

  • 376 篇 英文
  • 14 篇 其他
  • 7 篇 中文
  • 1 篇 法文
检索条件"主题词=K-means clustering algorithm"
398 条 记 录,以下是71-80 订阅
排序:
A proposed hybrid clustering algorithm using k-means and BIRCH for cluster based cab recommender system (CBCRS)
收藏 引用
International Journal of Information Technology (Singapore) 2023年 第1期15卷 219-227页
作者: Mann, Supreet kaur Chawla, Sonal Panjab University Panjab Chandigarh India
An efficient Cluster Based Cab Recommender System (CBCRS) assists the cab drivers with the recommendations about passenger pickup location available at the shortest distance from him. To recommend drivers about the pa... 详细信息
来源: 评论
The comprehensive evaluation of innovative education quality from the perspective of balanced and stable development
收藏 引用
INTERNATIONAL JOURNAL OF INNOVATION AND SUSTAINABLE DEVELOPMENT 2025年 第1期19卷 43-57页
作者: Feng, Xiaoping Hunan City Univ Coll Humanities Yiyang 413000 Hunan Peoples R China
In order to overcome the problems of long data collection time, high error rate of index weight calculation and low accuracy of traditional evaluation methods, a comprehensive evaluation method of innovative education... 详细信息
来源: 评论
Feature Selection algorithm Based on k-means clustering  7
Feature Selection Algorithm Based on K-means Clustering
收藏 引用
7th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
作者: Tang, Xue Dong, Min Bi, Sheng Pei, Maofeng Cao, Dan Xie, Cheche Chi, Sunhuang South China Univ Technol Sch Comp Sci & Engn Guangzhou 510640 Guangdong Peoples R China
In order to improve the performance of the feature selection algorithm, a feature selection algorithm based on k-means clustering is designed. The algorithm makes use of the idea of k-means clustering based on cosine ... 详细信息
来源: 评论
Bus travel feature inference with small samples based on multi-clustering topic model over Internet of Things
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2025年 163卷
作者: Liu, Hongjie Shi, Haotian Yuan, Tengfei Fu, Sicheng Ran, Bin Xi'an Jiaotong Univ Sch Comp Sci & Technol Xian 710049 Peoples R China Univ Wisconsin Madison Civil & Environm Engn Madison WI 53706 USA Shanghai Univ SILC Business Sch Shanghai 201800 Peoples R China
With the widespread application of Internet of Things (IoT) technology, there has been a shift from a broad-brush to a more refined approach in traffic optimization. An increasing amount of IoT data is being utilized ... 详细信息
来源: 评论
A Hybrid k-means Method based on Modified Rat Swarm Optimization algorithm for Data clustering  43
A Hybrid K-means Method based on Modified Rat Swarm Optimiza...
收藏 引用
43rd Chinese Control Conference (CCC)
作者: Lou, Taishan Guan, Guanguang Yu, Zhepeng Wang, Yu Tong, Shihao Zhengzhou Univ Light Ind Sch Elect & Informat Engn Zhengzhou 450002 Henan Peoples R China
The original k-means clustering algorithm is prone to local optima and sensitive to the initial clustering center, which have a great impact on accuracy and stability of clustering results in practical applications. T... 详细信息
来源: 评论
k-means clustering Based on Improved Quantum Particle Swarm Optimization algorithm  13
K-means Clustering Based on Improved Quantum Particle Swarm ...
收藏 引用
13th International Conference on Advanced Computational Intelligence (ICACI)
作者: Bai, Lili Song, Zerui Bao, Haijie Jiang, Jingqing Inner Mongolia Univ Nationalities Coll Comp Sci & Technol Tongliao Peoples R China Inner Mongolia Univ Nationalities Coll Math & Phys Tongliao Peoples R China
In clustering, in order to find a better data clustering center, make the algorithm convergence faster and clustering results more accurate, a k-means clustering algorithm based on improved quantum particle swarm opti... 详细信息
来源: 评论
Customer segmentation using k-means clustering and the adaptive particle swarm optimization algorithm
收藏 引用
APPLIED SOFT COMPUTING 2021年 第PartB期113卷 107924-107924页
作者: Li, Yue Chu, Xiaoquan Tian, Dong Feng, Jianying Mu, Weisong China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China Minist Agr Key Lab Viticulture & Enol Beijing 100083 Peoples R China
The improvement of enterprise competitiveness depends on the ability to match segmented customers in a competitive market. In this study, we propose a customer segmentation method based on the improved k-means algorit... 详细信息
来源: 评论
A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions
收藏 引用
JOURNAL OF GEODESY 2022年 第11期96卷 91-91页
作者: Ulug, Rasit karslioglu, Mahmut Onur Middle East Tech Univ Dept Geodet & Geog Informat Technol TR-068000 Ankara Turkey Middle East Tech Univ Dept Civil Engn Geomat Engn Div Ankara Turkey
In this study, a new data-adaptive network design methodology called k-SRBF is presented for the spherical radial basis functions (SRBFs) in regional gravity field modeling. In this methodology, the cluster centers (c... 详细信息
来源: 评论
A Hybrid k-means Method based on Modified Rat Swarm Optimization algorithm for Data clustering
A Hybrid K-means Method based on Modified Rat Swarm Optimiza...
收藏 引用
第43届中国控制会议
作者: Taishan Lou Guanguang Guan Zhepeng Yue Yu Wang Shihao Tong School of Electrical and Information Engineering Zhengzhou University of Light Industry
The original k-means clustering algorithm is prone to local optima and sensitive to the initial clustering center,which have a great impact on accuracy and stability of clustering results in practical *** overcome thi... 详细信息
来源: 评论
An Improved clustering algorithm Based on k-means and Artificial Bee Colony Optimization for Datasets that Contain Outliers
An Improved Clustering Algorithm Based on k-Means and Artifi...
收藏 引用
International Conference on Computing, Power and Communication Technologies
作者: Anu Balachandran k.A. Abdul Nazeer Department of Computer Science and Engineering National Institute of Technology
k-means clustering algorithm is the most widely used algorithm in clustering. It is most popular because of its simplicity. There are a lot of issues faced by k-means algorithm such as, low quality of clusters formed,... 详细信息
来源: 评论