咨询与建议

限定检索结果

文献类型

  • 4 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 7 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 软件工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程

主题

  • 7 篇 knowledge graph ...
  • 2 篇 knowledge graph ...
  • 2 篇 contrastive lear...
  • 1 篇 knowledge engine...
  • 1 篇 representation l...
  • 1 篇 knowledge graph ...
  • 1 篇 graph convolutio...
  • 1 篇 task analysis
  • 1 篇 multiplexing
  • 1 篇 incremental infe...
  • 1 篇 generative pre-t...
  • 1 篇 predictive model...
  • 1 篇 decoding
  • 1 篇 semantics
  • 1 篇 few-shot learnin...
  • 1 篇 embeddings learn...
  • 1 篇 taxonomy
  • 1 篇 multiplex relati...
  • 1 篇 data augmentatio...
  • 1 篇 data models

机构

  • 1 篇 chinese acad sci...
  • 1 篇 baidu inc people...
  • 1 篇 univ southern ca...
  • 1 篇 guangdong univer...
  • 1 篇 lanzhou univ sch...
  • 1 篇 beihang univ ins...
  • 1 篇 school of inform...
  • 1 篇 carnegie mellon ...
  • 1 篇 beijing univ pos...
  • 1 篇 southwestern uni...
  • 1 篇 school of comput...
  • 1 篇 beijing inst tec...
  • 1 篇 beijing univ pos...
  • 1 篇 beihang univ sch...
  • 1 篇 natl univ singap...
  • 1 篇 tencent search p...

作者

  • 2 篇 hu bin
  • 2 篇 huang rikui
  • 2 篇 li zepeng
  • 2 篇 zhai minyu
  • 2 篇 zhu guozhen
  • 1 篇 kuo c. -c. jay
  • 1 篇 lianglun cheng
  • 1 篇 zhuowei wang
  • 1 篇 zhang zhongbao
  • 1 篇 hongbin zhang
  • 1 篇 wang bin
  • 1 篇 yao shunyu
  • 1 篇 zhang anxiang
  • 1 篇 liang chenhui
  • 1 篇 zhuang fuzhen
  • 1 篇 tao wang
  • 1 篇 li qing
  • 1 篇 chong chen
  • 1 篇 xie ruobing
  • 1 篇 wang yun-cheng

语言

  • 7 篇 英文
检索条件"主题词=Knowledge Graph Entity Typing"
7 条 记 录,以下是1-10 订阅
排序:
A Framework Based on Data Augmentation for knowledge graph entity typing
A Framework Based on Data Augmentation for Knowledge Graph E...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Li, Zepeng Zhai, Minyu Li, Xiao Huang, Rikui Liang, Chenhui Hu, Bin School of Information Science & Engineering Lanzhou University Lanzhou China School of Computer Science & Technology Huazhong University of Science and Technology Wuhan China
The task of knowledge graph entity typing (KGET) aims to infer the missing types for entities in knowledge graphs, which is a significant subtask of knowledge graph completion (KGC). In despite of its progress, we obs... 详细信息
来源: 评论
knowledge graph entity typing with Contrastive Learning  2022
Knowledge Graph Entity Typing with Contrastive Learning
收藏 引用
6th International Conference on Machine Learning and Soft Computing (ICMLSC)
作者: Zhu, Guozhen Yao, Shunyu Beijing Univ Posts & Telecommun Beijing Beijing Peoples R China
knowledge graph entity typing is an important way to complete knowledge graphs (KGs), aims at predicting the associating types of certain given entities. However, previous methods suppose that many (entity, entity typ... 详细信息
来源: 评论
A performant and incremental algorithm for knowledge graph entity typing
收藏 引用
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS 2023年 第5期26卷 2453-2470页
作者: Li, Zepeng Huang, Rikui Zhai, Minyu Zhang, Zhenwen Hu, Bin Lanzhou Univ Sch Informat Sci & Engn Gansu Prov Key Lab Wearable Comp Lanzhou 730000 Gansu Peoples R China Beijing Inst Technol Sch Med Technol Beijing 100081 Peoples R China Chinese Acad Sci Shanghai Inst Biol Sci CAS Ctr Excellence Brain Sci & Intelligence Techno Shanghai 200000 Peoples R China
knowledge graph entity typing (KGET) is a subtask of knowledge graph completion, which aims at inferring missing entity types by utilizing existing type knowledge and triple knowledge of the knowledge graph. Previous ... 详细信息
来源: 评论
Connecting Embeddings Based on Multiplex Relational graph Attention Networks for knowledge graph entity typing
收藏 引用
IEEE TRANSACTIONS ON knowledge AND DATA ENGINEERING 2023年 第5期35卷 4608-4620页
作者: Zhao, Yu Zhou, Han Zhang, Anxiang Xie, Ruobing Li, Qing Zhuang, Fuzhen Southwestern Univ Finance & Econ Financial Intelligence & Financial Engn Key Lab Si Fintech Innovat Ctr Chengdu 610074 Sichuan Peoples R China Baidu Inc Beijing 100085 Peoples R China Carnegie Mellon Univ Shool Comp Sci Pittsburgh PA 15213 USA Tencent Search Prod Ctr WeChat Search Applicat Dept Shenzhen 518054 Peoples R China Beihang Univ Inst Artificial Intelligence Sch Comp Sci Beijing 100191 Peoples R China Beihang Univ Sch Comp Sci SKLSDE Beijing 100191 Peoples R China
knowledge graph entity typing (KGET) aims to infer missing entity typing instances in KGs, which is a significant subtask of KG completion. Despite of its progress, however, we observe that it still faces two non-triv... 详细信息
来源: 评论
AsyncET: Asynchronous Representation Learning for knowledge graph entity typing  24
AsyncET: Asynchronous Representation Learning for Knowledge ...
收藏 引用
30th ACM SIGKDD Conference on knowledge Discovery and Data Mining
作者: Wang, Yun-Cheng Ge, Xiou Wang, Bin Kuo, C. -C. Jay Univ Southern Calif Los Angeles CA 90007 USA Natl Univ Singapore Singapore Singapore
knowledge graph entity typing (KGET) aims to predict the missing entity types in knowledge graphs (KG). The relationship between entities and their corresponding types is often expressed using a single relation, hasTy... 详细信息
来源: 评论
Few-Shot knowledge graph entity typing  1
收藏 引用
26th Pacific-Asia Conference on knowledge Discovery and Data Mining (PAKDD)
作者: Zhu, Guozhen Zhang, Zhongbao Su, Sen Beijing Univ Posts & Telecommun State Key Lab Networking & Switching Technol Beijing 100876 Peoples R China
knowledge graph entity typing, which is an important way to complete knowledge graphs (KGs), aims at predicting the associating type of certain given entities without any external knowledge. However, previous methods ... 详细信息
来源: 评论
A GPT-assisted Multi-Granularity Contrastive Learning approach for knowledge graph entity typing
收藏 引用
ACM Transactions on Intelligent Systems and Technology 1000年
作者: Hongbin Zhang Tao Wang Zhuowei Wang Nankai Lin Chong Chen Lianglun Cheng Guangdong University of Technology China
knowledge graph entity typing (KGET) is an efficient way to infer possible missing types for entities, which has become a key instrument to enhance the construction of knowledge graphs (KGs). Existing models to KGET h... 详细信息
来源: 评论