咨询与建议

限定检索结果

文献类型

  • 304 篇 期刊文献
  • 261 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 566 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 531 篇 工学
    • 510 篇 计算机科学与技术...
    • 103 篇 电气工程
    • 66 篇 软件工程
    • 39 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
    • 2 篇 仪器科学与技术
    • 2 篇 交通运输工程
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 18 篇 数学
    • 13 篇 生物学
    • 8 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 24 篇 医学
    • 14 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 566 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 63 篇 knowledge graph ...
  • 34 篇 representation l...
  • 29 篇 knowledge graphs
  • 23 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 12 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 computational mo...
  • 10 篇 knowledge engine...
  • 10 篇 recommender syst...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 li guanyu
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 559 篇 英文
  • 7 篇 其他
检索条件"主题词=Knowledge Graph embedding"
566 条 记 录,以下是131-140 订阅
排序:
Modeling IsA Relations via Box Structure for knowledge graph embedding  26th
Modeling IsA Relations via Box Structure for Knowledge Graph...
收藏 引用
26th Pacific-Asia Conference on knowledge Discovery and Data Mining (PAKDD)
作者: Dong, Yao Wang, Lei Xiang, Ji Liu, Kai Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China
knowledge graph completion (KGC) aims to predict missing connections by mining information already present in a knowledge graph (KG). Predicting such connections is heavily dependent on the inference patterns. IsA rel... 详细信息
来源: 评论
Clustering-Enhanced knowledge graph embedding  1
收藏 引用
10th CCF Big Data Conference (BigData)
作者: Zhang, Fuwei Zhang, Zhao Zhuang, Fuzhen Gu, Jingjing Shi, Zhiping He, Qing Chinese Acad Sci Key Lab Intelligent Informat Proc Chinese Acad Sc Inst Comp Technol Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Chinese Acad Sci Inst Comp Technol Beijing 100190 Peoples R China Xiamen Inst Data Intelligence Xiamen Peoples R China Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China Capital Normal Univ Beijing 100048 Peoples R China
knowledge graph embedding (KGE) is a task to transform the symbolic entities and relations in knowledge graphs (KGs) into low-dimensional vectors, which facilitates the use of KGs in downstream applications. However, ... 详细信息
来源: 评论
Course recommendation model based on knowledge graph embedding  16
Course recommendation model based on Knowledge Graph Embeddi...
收藏 引用
16th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS)
作者: Chetoui, Ismail El Bachari, Essaid El Adnani, Mohamed Cadi Ayyad Univ Dept Comp Sci Marrakech Morocco
The use of graphs as a method of storing data has begun to rise significantly in recent years, due to the new way of representing data in graphs. This is leveraged by the structure of graphs that facilitate modeling i... 详细信息
来源: 评论
TransP: A New knowledge graph embedding Model by Translating on Positions  11
TransP: A New Knowledge Graph Embedding Model by Translating...
收藏 引用
11th IEEE International Conference on knowledge graph (IEEE ICKG)
作者: Ren, Feiliang Li, Jucheng Zhang, Huihui Yang, Xiaochun Northeastern Univ Sch Comp Sci & Engn Shenyang Peoples R China
embedding knowledge graph into continuous space(s) is attracting more and more research attention, and lots of novel methods have been proposed. Among them, translation based methods achieved state-of-the-art experime... 详细信息
来源: 评论
MDNCaching: A Strategy to Generate Quality Negatives for knowledge graph embedding  35th
MDNCaching: A Strategy to Generate Quality Negatives for Kno...
收藏 引用
35th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE)
作者: Madushanka, Tiroshan Ichise, Ryutaro SOKENIAI Grad Univ Adv Studies Chiyoda Ku 2-1-2 Hitotsubashi Tokyo Japan Natl Inst Informat Chiyoda Ku 2-1-2 Hitotsubashi Tokyo Japan Univ Kelaniya Kelaniya Sri Lanka
knowledge graph embedding (KGE) has become an integral part of AI as it enables knowledge construction and exploring missing information. KGE encodes the entities and relations (elements) in a knowledge graph into a l... 详细信息
来源: 评论
HRS: Hybrid Recommendation System based on Attention Mechanism and knowledge graph embedding
HRS: Hybrid Recommendation System based on Attention Mechani...
收藏 引用
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)
作者: Dong, Chunfang Ju, Xuchan Ma, Yue Zhengzhou Univ Zhengzhou Key Lab Big Data Anal & Applicat Henan Acad Big Data Zhengzhou Peoples R China Shenzhen Univ Coll Math & Stat Shenzhen Peoples R China
Traditional recommendation methods often have sparsity and cold start problems in real applications. Researchers found that introducing knowledge graphs into recommender systems as a kind of auxiliary information can ... 详细信息
来源: 评论
Scaling knowledge graph embedding Models for Link Prediction  2
Scaling Knowledge Graph Embedding Models for Link Prediction
收藏 引用
2nd European Workshop on Machine Learning and Systems (EuroMLSys)
作者: Sheikh, Nasrullah Qin, Xiao Reinwald, Berthold Lei, Chuan IBM Res Almaden San Jose CA 95120 USA Instacart San Francisco CA USA
Developing scalable solutions for training graph Neural Networks (GNNs) for link prediction tasks is challenging due to the inherent data dependencies which entail high computational costs and a huge memory footprint.... 详细信息
来源: 评论
Confidence-aware Self-Semantic Distillation on knowledge graph embedding  24
Confidence-aware Self-Semantic Distillation on Knowledge Gra...
收藏 引用
33rd ACM International Conference on Information and knowledge Management (CIKM)
作者: Liu, Yichen Chen, Jiawei Chen, Defang Zhou, Zhehui Feng, Yan Wang, Can Zhejiang Univ Coll Comp Sci Hangzhou Peoples R China Zhejiang Univ State Key Lab Blockchain & Data Secur Hangzhou Peoples R China China & Hangzhou High Tech Zone Binjiang Inst Blo Hangzhou Peoples R China
knowledge graph embedding (KGE), which projects entities and relations into continuous vector spaces, has garnered significant attention. Although high-dimensional KGE methods offer better performance, they come at th... 详细信息
来源: 评论
A Lightweight knowledge graph embedding Framework for Efficient Inference and Storage  21
A Lightweight Knowledge Graph Embedding Framework for Effici...
收藏 引用
30th ACM International Conference on Information and knowledge Management (CIKM)
作者: Wang, Haoyu Wang, Yaqing Lian, Defu Gao, Jing Purdue Univ W Lafayette IN 47907 USA Univ Sci & Technol China Hefei Peoples R China Yangtze River Delta Informat Intelligence Innovat Wuhu Peoples R China
knowledge graphs, which consist of entities and their relations, have become a popular way to store structured knowledge. knowledge graph embedding (KGE), which derives a representation for each entity and relation, h... 详细信息
来源: 评论
Learning Dynamic knowledge graph embedding in Evolving Service Ecosystems via Meta-Learning
Learning Dynamic Knowledge Graph Embedding in Evolving Servi...
收藏 引用
IEEE International Conference on Web Services (IEEE ICWS)
作者: Sun, Hongliang Liu, Jinlan Wang, Can Sui, Dianbo Tu, Zhiying Xu, Xiaofei Harbin Inst Technol Fac Comp Weihai Peoples R China
In the context of dynamic service ecosystems, the inability of conventional knowledge graph embedding (KGE) methods to efficiently update incremental knowledge poses a significant challenge for the effectiveness of in... 详细信息
来源: 评论