咨询与建议

限定检索结果

文献类型

  • 304 篇 期刊文献
  • 261 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 566 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 531 篇 工学
    • 510 篇 计算机科学与技术...
    • 103 篇 电气工程
    • 66 篇 软件工程
    • 39 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
    • 2 篇 仪器科学与技术
    • 2 篇 交通运输工程
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 18 篇 数学
    • 13 篇 生物学
    • 8 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 24 篇 医学
    • 14 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 566 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 63 篇 knowledge graph ...
  • 34 篇 representation l...
  • 29 篇 knowledge graphs
  • 23 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 12 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 computational mo...
  • 10 篇 knowledge engine...
  • 10 篇 recommender syst...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 li guanyu
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 559 篇 英文
  • 7 篇 其他
检索条件"主题词=Knowledge Graph embedding"
566 条 记 录,以下是151-160 订阅
排序:
Relation and Fact Type Supervised knowledge graph embedding via Weighted Scores  18th
Relation and Fact Type Supervised Knowledge Graph Embedding ...
收藏 引用
18th China National Conference on Computational Linguistics (CCL)
作者: Zhou, Bo Chen, Yubo Liu, Kang Zhao, Jun Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
knowledge graph embedding aims at learning low-dimensional representations for entities and relations in knowledge graph. Previous knowledge graph embedding methods use just one score to measure the plausibility of a ... 详细信息
来源: 评论
Enhancing Semantic Awareness in knowledge graph embedding  18
Enhancing Semantic Awareness in Knowledge Graph Embedding
收藏 引用
18th IEEE International Conference on Semantic Computing (ICSC)
作者: Xu, Gang Zhang, Wenbo Wang, Tao Chinese Acad Sci Technol Ctr Software Engn Inst Software Beijing Peoples R China
knowledge graph embedding aims to represent entities and relations as low dimensional vectors. The representative ability of low dimensional vectors is one of the most important aspects of knowledge graph embedding. K... 详细信息
来源: 评论
Weighted knowledge graph embedding  23
Weighted Knowledge Graph Embedding
收藏 引用
46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Zhang, Zhao Guan, Zhanpeng Zhang, Fuwei Zhuang, Fuzhen An, Zhulin Wang, Fei Xu, Yongjun Chinese Acad Sci Inst Comp Technol Beijing Peoples R China Univ Chinese Acad Sci Chinese Acad Sci Inst Comp Technol Beijing Peoples R China Beihang Univ Inst Artificial Intelligence Zhongguancun Lab Beijing Peoples R China
knowledge graph embedding (KGE) aims to project both entities and relations in a knowledge graph (KG) into low-dimensional vectors. Indeed, existing KGs suffer from the data imbalance issue, i.e., entities and relatio... 详细信息
来源: 评论
A Transformer-based knowledge graph embedding Model Combining graph Paths and Local Neighborhood
A Transformer-based Knowledge Graph Embedding Model Combinin...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhu, Tong Tan, Huobin Chen, Xinyu Ren, Yating Beihang Univ Sch Software Beijing Peoples R China
Many existing knowledge graph embedding methods achieve outstanding performance by exploiting the graph structure, among which graph neural network-based methods that utilize the local neighborhood are the most repres... 详细信息
来源: 评论
Ontological Concept Structure Aware knowledge Transfer for Inductive knowledge graph embedding
Ontological Concept Structure Aware Knowledge Transfer for I...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ren, Chao Zhang, Le Fan, Lintao Xu, Tong Wang, Zhefeng Yuan, Senchao Chen, Enhong Univ Sci & Technol China Sch Comp Sci & Technol Hefei Peoples R China Huawei Technol Shenzhen Peoples R China
Conventional knowledge graph embedding methods mainly assume that all entities at reasoning stage are available in the original training graph. But in real-world application scenarios, newly emerged entities are alway... 详细信息
来源: 评论
Multi-hop Question Answering with knowledge graph embedding in a Similar Semantic Space
Multi-hop Question Answering with Knowledge Graph Embedding ...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Li, Fengying Chen, Mingdong Dong, Rongsheng Guilin Univ Elect Technol Guangxi Key Lab Trusted Software Guilin Peoples R China
Multi-hop Question Answering using the knowledge graph (KG) as a data source requires subject entities and relations that are obtained from natural language questions;the answers are then obtained by reasoning through... 详细信息
来源: 评论
Research on Adverse Drug Reaction Prediction Model Combining knowledge graph embedding and Deep Learning  4
Research on Adverse Drug Reaction Prediction Model Combining...
收藏 引用
4th International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)
作者: Li, Yufeng Zhao, Wenchao Dang, Bo Yan, Xu Gao, Min Wang, Weimin Xiao, Mingxuan Univ Southampton Southampton Hants England Univ Sci & Technol China Hefei Anhui Peoples R China San Francisco Bay Univ Fremont Comp Sci Fremont CA USA Trine Univ Phoenix AZ USA Trine Univ Allen Pk MI USA Hong Kong Univ Sci & Technol Hong Kong Peoples R China SouthWest JiaoTong Univ Chengdu Sichuan Peoples R China
In clinical treatment, identifying potential adverse reactions of drugs can help assist doctors in making medication decisions. In response to the problems in previous studies that features are high-dimensional and sp... 详细信息
来源: 评论
Fast variational knowledge graph embedding  5
Fast variational knowledge graph embedding
收藏 引用
2024 International Conference on Quantum Computing and Engineering
作者: Giri, Pulak Ranjan Kurokawa, Mori Saito, Kazuhiro KDDI Res Inc Fujimino Saitama Japan
embedding of a knowledge graph(KG) entities and relations in the form of vectors is an important aspect for the manipulation of the KG database for several downstream tasks, such as link prediction, knowledge graph co... 详细信息
来源: 评论
GGAT: knowledge graph embedding Model via Global Information
GGAT: Knowledge Graph Embedding Model via Global Information
收藏 引用
Asia Conference on Algorithms, Computing and Machine Learning (CACML))
作者: Wang, Zhe Guo, Zhongwen Ocean Univ China Fac Informat Sci & Engn Qingdao Peoples R China
Recently, knowledge graph embedding model based on graph Attention Network (GAT) has shown great potential in link prediction task. However, the existing GAT basedmodels ignore the global information in the neighborho... 详细信息
来源: 评论
Identifying compound-protein interactions with knowledge graph embedding of perturbation transcriptomics
收藏 引用
CELL GENOMICS 2024年 第10期4卷 100655-100655页
作者: Ni, Shengkun Kong, Xiangtai Zhang, Yingying Chen, Zhengyang Wang, Zhaokun Fu, Zunyun Huo, Ruifeng Tong, Xiaochu Qu, Ning Wu, Xiaolong Wang, Kun Zhang, Wei Zhang, Runze Zhang, Zimei Shi, Jiangshan Wang, Yitian Yang, Ruirui Li, Xutong Zhang, Sulin Zheng, Mingyue Chinese Acad Sci Shanghai Inst Mat Med Drug Discovery & Design Ctr State Key Lab Drug Res 555 Zuchongzhi Rd Shanghai 201203 Peoples R China Univ Chinese Acad Sci 19A Yuquan Rd Beijing 100049 Peoples R China Univ Sci & Technol China Sch Life Sci Div Life Sci & Med Hefei 230026 Peoples R China Univ Sci & Technol China Affiliated Hosp USTC 1 Anhui Prov Hosp Div Life Sci & Med Hefei 230001 Peoples R China Nanjing Univ Chinese Med 138 Xianlin Rd Nanjing 210023 Peoples R China East China Univ Sci & Technol Sch Pharm Shanghai 200237 Peoples R China Univ Chinese Acad Sci Hangzhou Inst Adv Study Sch Pharmaceut Sci & Technol Hangzhou 310024 Peoples R China
The emergence of perturbation transcriptomics provides a new perspective for drug discovery, but existing analysis methods suffer from inadequate performance and limited applicability. In this work, we present PertKGE... 详细信息
来源: 评论