咨询与建议

限定检索结果

文献类型

  • 304 篇 期刊文献
  • 261 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 566 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 531 篇 工学
    • 510 篇 计算机科学与技术...
    • 103 篇 电气工程
    • 66 篇 软件工程
    • 39 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
    • 2 篇 仪器科学与技术
    • 2 篇 交通运输工程
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 18 篇 数学
    • 13 篇 生物学
    • 8 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 24 篇 医学
    • 14 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 566 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 63 篇 knowledge graph ...
  • 34 篇 representation l...
  • 29 篇 knowledge graphs
  • 23 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 12 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 computational mo...
  • 10 篇 knowledge engine...
  • 10 篇 recommender syst...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 li guanyu
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 559 篇 英文
  • 7 篇 其他
检索条件"主题词=Knowledge Graph embedding"
566 条 记 录,以下是181-190 订阅
排序:
Two-Stage Entity Alignment: Combining Hybrid knowledge graph embedding with Similarity-Based Relation Alignment  16th
Two-Stage Entity Alignment: Combining Hybrid Knowledge Graph...
收藏 引用
16th Pacific Rim International Conference on Artificial Intelligence (PRICAI)
作者: Jiang, Tingting Bu, Chenyang Zhu, Yi Wu, Xindong Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China Hefei Univ Technol Inst Big Knowledge Sci Hefei Peoples R China Mininglamp Acad Sci Mininglamp Technol Beijing Peoples R China
Entity alignment aims to automatically determine whether an entity pair in different knowledge graphs refers to the same entity in reality. Existing entity alignment methods can be classified into two categories: stri... 详细信息
来源: 评论
Rotate3D: Representing Relations as Rotations in Three-Dimensional Space for knowledge graph embedding  20
Rotate3D: Representing Relations as Rotations in Three-Dimen...
收藏 引用
29th ACM International Conference on Information and knowledge Management (CIKM)
作者: Gao, Chang Sun, Chengjie Shan, Lili Lin, Lei Wang, Mingjiang Harbin Inst Technol Harbin Heilongjiang Peoples R China Harbin Inst Technol SZ Shenzhen Guangdong Peoples R China
knowledge graph embedding, which aims to learn low-dimensional embeddings of entities and relations, plays a vital role in a wide range of applications. It is crucial for knowledge graph embedding models to model and ... 详细信息
来源: 评论
Enhancing knowledge graph embedding with Relational Constraints  11
Enhancing Knowledge Graph Embedding with Relational Constrai...
收藏 引用
11th IEEE International Conference on knowledge graph (IEEE ICKG)
作者: Li, Mingda Sun, Zhengya Zhang, Siheng Zhang, Wensheng Chinese Acad Sci Res Ctr Precis Sensing & Control Inst Automat Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
knowledge graph embedding is studied to embed entities and relations of a knowledge graph into continuous vector spaces, which benefits a variety of real-world applications. Among existing solutions, translation-based... 详细信息
来源: 评论
DualDE: Dually Distilling knowledge graph embedding for Faster and Cheaper Reasoning  22
DualDE: Dually Distilling Knowledge Graph Embedding for Fast...
收藏 引用
15th ACM International Conference on Web Search and Data Mining (WSDM)
作者: Zhu, Yushan Zhang, Wen Chen, Mingyang Chen, Hui Cheng, Xu Zhang, Wei Chen, Huajun Zhejiang Univ Hangzhou Zhejiang Peoples R China Alibaba Grp Hangzhou Zhejiang Peoples R China Peking Univ Beijing Peoples R China Zhejiang Univ Hangzhou Innovat Ctr Coll Comp Sci Hangzhou Zhejiang Peoples R China
knowledge graph embedding (KGE) is a popular method for KG reasoning and training KGEs with higher dimension are usually preferred since they have better reasoning capability. However, high-dimensional KGEs pose huge ... 详细信息
来源: 评论
Locally Adaptive Translation for knowledge graph embedding  30
Locally Adaptive Translation for Knowledge Graph Embedding
收藏 引用
30th Association-for-the-Advancement-of-Artificial-Intelligence (AAAI) Conference on Artificial Intelligence
作者: Jia, Yantao Wang, Yuanzhuo Lin, Hailun Jin, Xiaolong Cheng, Xueqi Chinese Acad Sci CAS Key Lab Network Data Sci & Technol Inst Comp Technol Beijing Peoples R China Chinese Acad Sci Inst Informat Engn Beijing Peoples R China
knowledge graph embedding aims to represent entities and relations in a large-scale knowledge graph as elements in a continuous vector space. Existing methods, e.g., TransE and TransH, learn embedding representation b... 详细信息
来源: 评论
Efficient Non-Sampling knowledge graph embedding  21
Efficient Non-Sampling Knowledge Graph Embedding
收藏 引用
30th World Wide Web Conference (WWW)
作者: Li, Zelong Ji, Jianchao Fu, Zuohui Ge, Yingqiang Xu, Shuyuan Chen, Chong Zhang, Yongfeng Rutgers State Univ New Brunswick NJ 08901 USA Tsinghua Univ Beijing Peoples R China
knowledge graph (KG) is a flexible structure that is able to describe the complex relationship between data entities. Currently, most KG embedding models are trained based on negative sampling, i.e., the model aims to... 详细信息
来源: 评论
SpherE: Expressive and Interpretable knowledge graph embedding for Set Retrieval  47
SpherE: Expressive and Interpretable Knowledge Graph Embeddi...
收藏 引用
47th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Li, Zihao Ao, Yuyi He, Jingrui Univ Illinois Urbana IL 61801 USA
knowledge graphs (KGs), which store an extensive number of relational facts (head, relation, tail), serve various applications. While many downstream tasks highly rely on the expressive modeling and predictive embeddi... 详细信息
来源: 评论
GCE: Global Contextual Information for knowledge graph embedding  43rd
GCE: Global Contextual Information for Knowledge Graph Embed...
收藏 引用
43rd European Conference on IR Research
作者: Wang, Chen Zhong, Jiang Chongqing Univ Coll Comp Sci Chongqing 400030 Peoples R China
Most existing large-scale knowledge graphs are suffering from incompleteness, and many research efforts have been devoted to the task of knowledge graph completion. One popular approach is to learn low-dimensional rep... 详细信息
来源: 评论
cuKE: An Efficient Code Generator for Score Function Computation in knowledge graph embedding  38
cuKE: An Efficient Code Generator for Score Function Computa...
收藏 引用
International Parallel and Distributed Processing Symposium (IPDPS)
作者: Hu, Lihan Li, Jing Jiang, Peng Univ Iowa Iowa City IA 52242 USA Nvidia Santa Clara CA USA
knowledge graph embedding (KGE) plays an important role in graph mining and learning applications by converting discrete graph structures to continuous vector representations. While previous systems have focused on sc... 详细信息
来源: 评论
On Integrating knowledge graph embedding into SPARQL Query Processing  25
On Integrating Knowledge Graph Embedding into SPARQL Query P...
收藏 引用
25th IEEE International Conference on Web Services (IEEE ICWS) Part of the IEEE World Congress on Services
作者: Kang, Hyunjoong Hong, Sanghyun Lee, Kookjin Park, Noseong Kwon, Soonhyun Elect & Telecommun Res Inst Daejeon South Korea Univ Maryland College Pk MD 20742 USA Univ N Carolina Charlotte NC 28223 USA
SPARQL is a standard query language for knowledge graphs (KGs). However, it is hard to find correct answer if KGs are incomplete or incorrect. knowledge graph embedding (KGE) enables answering queries on such KGs by i... 详细信息
来源: 评论