咨询与建议

限定检索结果

文献类型

  • 308 篇 期刊文献
  • 260 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 534 篇 工学
    • 511 篇 计算机科学与技术...
    • 104 篇 电气工程
    • 64 篇 软件工程
    • 38 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 17 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 25 篇 医学
    • 15 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 1 篇 教育学

主题

  • 569 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 64 篇 knowledge graph ...
  • 35 篇 representation l...
  • 30 篇 knowledge graphs
  • 25 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 13 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 computational mo...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 graph convolutio...
  • 10 篇 knowledge engine...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 li guanyu
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 563 篇 英文
  • 6 篇 其他
检索条件"主题词=Knowledge Graph embedding"
569 条 记 录,以下是221-230 订阅
排序:
Triple Context-Based knowledge graph embedding
收藏 引用
IEEE ACCESS 2018年 6卷 58978-58989页
作者: Gao, Huan Shi, Jun Qi, Guilin Wang, Meng Southeast Univ Comp Sci & Engn Inst Nanjing 211100 Jiangsu Peoples R China
knowledge graph embedding aims to represent entities and relations of a knowledge graph in continuous vector spaces. It has increasingly drawn attention for its ability to encode semantics in low dimensional vectors a... 详细信息
来源: 评论
Modeling the Correlations of Relations for knowledge graph embedding
收藏 引用
Journal of Computer Science & Technology 2018年 第2期33卷 323-334页
作者: Ji-Zhao Zhu Yan-Tao Jia Jun Xu Jian-Zhong Qiao Xue-Qi Cheng College of Computer Science and Engineering Northeastern University Shenyang 110169 China Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing 110190 China
knowledge graph embedding, which maps the entities and relations into low-dimensional vector spaces, has demonstrated its effectiveness in many tasks such as link prediction and relation extraction. Typical methods in... 详细信息
来源: 评论
GTrans: Generic knowledge graph embedding via Multi-State Entities and Dynamic Relation Spaces
收藏 引用
IEEE ACCESS 2018年 6卷 8232-8244页
作者: Tan, Zhen Zhao, Xiang Fang, Yang Xiao, Weidong Natl Univ Def Technol Changsha 410073 Hunan Peoples R China Natl Univ Def Technol Dept Informat Syst Engn Changsha 410073 Hunan Peoples R China
knowledge graph embedding aims to construct a low-dimensional and continuous space, which is able to describe the semantics of high-dimensional and sparse knowledge graphs. Among existing solutions, translation models... 详细信息
来源: 评论
Path-specific knowledge graph embedding
收藏 引用
knowledge-BASED SYSTEMS 2018年 151卷 37-44页
作者: Jia, Yantao Wang, Yuanzhuo Jin, Xiaolong Cheng, Xueqi Chinese Acad Sci Key Lab Network Data Sci & Technol Inst Comp Technol Beijing Peoples R China
knowledge graph embedding aims to represent entities, relations and multi-step relation paths of a knowledge graph as vectors in low-dimensional vector spaces, and supports many applications, such as entity prediction... 详细信息
来源: 评论
knowledge graph embedding: A Locally and Temporally Adaptive Translation-Based Approach
收藏 引用
ACM TRANSACTIONS ON THE WEB 2018年 第2期12卷 8-8页
作者: Jia, Yantao Wang, Yuanzhuo Jin, Xiaolong Lin, Hailun Cheng, Xueqi Chinese Acad Sci Inst Comp Technol CAS Key Lab Network Data Sci & Technol Beijing 100190 Peoples R China Chinese Acad Sci Inst Informat Engn Beijing 100193 Peoples R China
A knowledge graph is a graph with entities of different types as nodes and various relations among them as edges. The construction of knowledge graphs in the past decades facilitates many applications, such as link pr... 详细信息
来源: 评论
knowledge graph embedding: A Survey of Approaches and Applications
收藏 引用
IEEE TRANSACTIONS ON knowledge AND DATA ENGINEERING 2017年 第12期29卷 2724-2743页
作者: Wang, Quan Mao, Zhendong Wang, Bin Guo, Li Chinese Acad Sci Inst Informat Engn Beijing 100049 Peoples R China Univ CAS Sch Cyber Secur Beijing 100049 Peoples R China Chinese Acad Sci State Key Lab Informat Secur Beijing 100093 Peoples R China
knowledge graph (KG) embedding is to embed components of a KG including entities and relations into continuous vector spaces, so as to simplify the manipulation while preserving the inherent structure of the KG. It ca... 详细信息
来源: 评论
Semi-Supervised Aspect-Based Sentiment Analysis for Case-Related Microblog Reviews Using Case knowledge graph embedding
International Journal of Asian Language Processing
收藏 引用
International Journal of Asian Language Processing 2021年 第3期30卷
作者: Peilian Zhao Cunli Mao Zhengtao Yu Faculty of Information Engineering and Automation Kunming University of Science and Technology Jingming South Road No.727 Chenggong Kunming Yunnan 650500 P. R. China Key Laboratory of Artificial Intelligence Kunming University of Science and Technology Kunming Yunnan 650500 P. R. China
Aspect-Based Sentiment Analysis (ABSA), a fine-grained task of opinion mining, which aims to extract sentiment of specific target from text, is an important task in many real-world applications, especially in the lega... 详细信息
来源: 评论
Enhanced knowledge graph embedding by Jointly Learning Soft Rules and Facts
收藏 引用
ALGORITHMS 2019年 第12期12卷 265页
作者: Zhang, Jindou Li, Jing Univ Sci & Technol China Sch Comp Sci & Technol Hefei 230026 Peoples R China
Combining first order logic rules with a knowledge graph (KG) embedding model has recently gained increasing attention, as rules introduce rich background information. Among such studies, models equipped with soft rul... 详细信息
来源: 评论
Stock Price Movement Prediction from Financial News with Deep Learning and knowledge graph embedding  1
收藏 引用
15th Pacific Rim International Conference on Artificial Intelligence (PRICAI) / 15th Pacific Rim knowledge Acquisition Workshop (PKAW)
作者: Liu, Yang Zeng, Qingguo Yang, Huanrui Carrio, Adrian Univ Politecn Madrid Dept Ind Engn Business Adm & Stat E-28006 Madrid Spain South China Normal Univ Guangzhou Guangdong Peoples R China Duke Univ Elect & Comp Engn Dept Durham NC 27708 USA Univ Politecn Madrid Ctr Automat & Robot E-28006 Madrid Spain
As the technology applied to economy develops, more and more investors are paying attention to stock prediction. Therefore, research on stock prediction is becoming a hot area. In this paper, we propose to incorporate... 详细信息
来源: 评论
Confidence-Aware Negative Sampling Method for Noisy knowledge graph embedding  9
Confidence-Aware Negative Sampling Method for Noisy Knowledg...
收藏 引用
9th IEEE International Conference on Big knowledge (ICBK)
作者: Shan, Yingchun Bu, Chenyang Liu, Xiaojian Ji, Shengwei Li, Lei Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Anhui Peoples R China
knowledge graph embedding (KGE) can benefit a variety of downstream tasks, such as link prediction and relation extraction, and has therefore quickly gained much attention. However, most conventional embedding models ... 详细信息
来源: 评论