咨询与建议

限定检索结果

文献类型

  • 308 篇 期刊文献
  • 260 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 534 篇 工学
    • 511 篇 计算机科学与技术...
    • 104 篇 电气工程
    • 64 篇 软件工程
    • 38 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 17 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 25 篇 医学
    • 15 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 1 篇 教育学

主题

  • 569 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 64 篇 knowledge graph ...
  • 35 篇 representation l...
  • 30 篇 knowledge graphs
  • 25 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 13 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 computational mo...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 graph convolutio...
  • 10 篇 knowledge engine...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 li guanyu
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 563 篇 英文
  • 6 篇 其他
检索条件"主题词=Knowledge Graph embedding"
569 条 记 录,以下是281-290 订阅
排序:
Augmenting embedding Projection With Entity Descriptions for knowledge graph Completion
收藏 引用
IEEE ACCESS 2021年 9卷 159955-159964页
作者: Chen, Junfan Xu, Jie Bo, Manhui Tang, Hongwu Beihang Univ Sch Comp Sci & Engn Beijing 100083 Peoples R China Univ Leeds Sch Comp Leeds LS2 9JT W Yorkshire England Travelsky Mobile Technol Ltd Beijing 100029 Peoples R China
Extra information, such as hierarchical entity types, entity descriptions or some text corpus are recently used to enhance knowledge graph Completion (KGC). A typical task in this setting is building entities' des... 详细信息
来源: 评论
EARR: Using rules to enhance the embedding of knowledge graph
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2023年 第1期232卷
作者: Li, Jin Xiang, Jinpeng Cheng, Jianhua Harbin Engn Univ Coll Comp Sci & Technol Harbin Peoples R China Harbin Engn Univ Coll Intelligent Syst Sci & Engn Harbin Peoples R China
knowledge graphs have been receiving increasing attention from researchers. However, most of these graphs are incomplete, leading to the rise of knowledge graph completion as a prominent task. The goal of knowledge gr... 详细信息
来源: 评论
Regularized online tensor factorization for sparse knowledge graph embeddings
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2023年 第1期35卷 787-797页
作者: Zulaika, Unai Almeida, Aitor Lopez-de-Ipina, Diego Univ Deusto DeustoTech Fac Engn Avda Univ 2 Bilbao 48007 Bizkaia Spain
knowledge graphs represent real-world facts and are used in several applications;however, they are often incomplete and have many missing facts. Link prediction is the task of completing these missing facts from exist... 详细信息
来源: 评论
INK: knowledge graph embeddings for node classification
收藏 引用
DATA MINING AND knowledge DISCOVERY 2022年 第2期36卷 620-667页
作者: Steenwinckel, Bram Vandewiele, Gilles Weyns, Michael Agozzino, Terencio De Turck, Filip Ongenae, Femke IDLab Technol Pk Zwijnaarde 126 B-9050 Ghent Belgium
Deep learning techniques are increasingly being applied to solve various machine learning tasks that use knowledge graphs as input data. However, these techniques typically learn a latent representation for the entiti... 详细信息
来源: 评论
Schema-Aware Hyper-Relational knowledge graph embeddings for Link Prediction
收藏 引用
IEEE TRANSACTIONS ON knowledge AND DATA ENGINEERING 2024年 第6期36卷 2614-2628页
作者: Lu, Yuhuan Yang, Dingqi Wang, Pengyang Rosso, Paolo Cudre-Mauroux, Philippe Univ Macau State Key Lab Internet Things Smart City Taipa Macao Peoples R China Univ Macau Dept Comp & Informat Sci Taipa Macao Peoples R China Univ Fribourg Fribourg Switzerland
knowledge graph (KG) embeddings have become a powerful paradigm to resolve link prediction tasks for KG completion. The widely adopted triple-based representation, where each triplet (h, r, t) links two entities h and... 详细信息
来源: 评论
Recommender systems based on neuro-symbolic knowledge graph embeddings encoding first-order logic rules
收藏 引用
USER MODELING AND USER-ADAPTED INTERACTION 2024年 第5期34卷 2039-2083页
作者: Spillo, Giuseppe Musto, Cataldo de Gemmis, Marco Lops, Pasquale Semeraro, Giovanni Univ Bari Aldo Moro Dipartimento Informat Via Edoardo Orabona 4 I-70125 Bari Italy
In this paper, we present a knowledge-aware recommendation model based on neuro-symbolic graph embeddings that encode first-order logic rules. Our approach is based on the intuition that is the basis of neuro-symbolic... 详细信息
来源: 评论
QuatSE: Spherical Linear Interpolation of Quaternion for knowledge graph embeddings  11th
QuatSE: Spherical Linear Interpolation of Quaternion for Kno...
收藏 引用
11th CCF International Conference on Natural Language Processing and Chinese Computing (NLPCC)
作者: Li, Jiang Su, Xiangdong Ma, Xinlan Gao, Guanglai Inner Mongolia Univ Coll Comp Sci Hohhot Peoples R China Natl & Local Joint Engn Res Ctr Intelligent Infor Hohhot Peoples R China Inner Mongolia Key Lab Mongolian Informat Proc Te Hohhot Peoples R China
knowledge graph embedding aims to learn representations of entities and relations in a knowledge graph. Recently, QuatE has introduced the graph embeddings into the quaternion space. However, there are still challenge... 详细信息
来源: 评论
knowledge graph embeddings for dealing with concept drift in machine learning
收藏 引用
JOURNAL OF WEB SEMANTICS 2021年 67卷 100625-100625页
作者: Chen, Jiaoyan Lecue, Freddy Pan, Jeff Z. Deng, Shumin Chen, Huajun Univ Oxford Dept Comp Sci Oxford England INRIA Le Chesnay Rocquencourt France Thales CortAIx Montreal PQ Canada Univ Aberdeen Dept Comp Sci Aberdeen Scotland Huawei Knowledge Graph Lab Reading Berks England Zhejiang Univ Coll Comp Sci & Technol Hangzhou Peoples R China ZJU Alibaba Joint Lab Knowledge Engine Hangzhou Peoples R China
Data stream learning has been largely studied for extracting knowledge structures from continuous and rapid data records. As data is evolving on a temporal basis, its underlying knowledge is subject to many challenges... 详细信息
来源: 评论
The DLCC Node Classification Benchmark for Analyzing knowledge graph embeddings  21st
The DLCC Node Classification Benchmark for Analyzing Knowled...
收藏 引用
21st International Semantic Web Conference (ISWC)
作者: Portisch, Jan Paulheim, Heiko SAP SE Walldorf Germany Univ Mannheim Data & Web Sci Grp Mannheim Germany
knowledge graph embedding is a representation learning technique that projects entities and relations in a knowledge graph to continuous vector spaces. embeddings have gained a lot of uptake and have been heavily used... 详细信息
来源: 评论
Demographic Aware Probabilistic Medical knowledge graph embeddings of Electronic Medical Records  19th
Demographic Aware Probabilistic Medical Knowledge Graph Embe...
收藏 引用
19th International Conference on Artificial Intelligence in Medicine (AIME)
作者: Guluzade, Aynur Kacupaj, Endri Maleshkova, Maria Univ Bonn Bonn Germany
Medical knowledge graphs (KGs) constructed from Electronic Medical Records (EMR) contain abundant information about patients and medical entities. The utilization of KG embedding models on these data has proven to be ... 详细信息
来源: 评论