咨询与建议

限定检索结果

文献类型

  • 304 篇 期刊文献
  • 261 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 566 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 531 篇 工学
    • 510 篇 计算机科学与技术...
    • 103 篇 电气工程
    • 66 篇 软件工程
    • 39 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
    • 2 篇 仪器科学与技术
    • 2 篇 交通运输工程
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 18 篇 数学
    • 13 篇 生物学
    • 8 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 24 篇 医学
    • 14 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 566 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 63 篇 knowledge graph ...
  • 34 篇 representation l...
  • 29 篇 knowledge graphs
  • 23 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 12 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 computational mo...
  • 10 篇 knowledge engine...
  • 10 篇 recommender syst...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 li guanyu
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 559 篇 英文
  • 7 篇 其他
检索条件"主题词=Knowledge Graph embedding"
566 条 记 录,以下是291-300 订阅
排序:
GEval: A Modular and Extensible Evaluation Framework for graph embedding Techniques  1
收藏 引用
17th Extended Semantic Web Conference (ESWC)
作者: Pellegrino, Maria Angela Altabba, Abdulrahman Garofalo, Martina Ristoski, Petar Cochez, Michael Univ Salerno Dept Comp Sci Fisciano Italy Rhein Westfal TH Aachen Informat Syst & Databases Aachen Germany IBM Res Almaden San Jose CA USA Vrije Univ Amsterdam Amsterdam Netherlands
While RDF data are graph shaped by nature, most traditional Machine Learning (ML) algorithms expect data in a vector form. To transform graph elements to vectors, several graph embedding approaches have been proposed.... 详细信息
来源: 评论
A Re-ranking Model for Dependency Parsing with knowledge graph embeddings
A Re-ranking Model for Dependency Parsing with Knowledge Gra...
收藏 引用
Proceedings of International Conference on Asian Language Processing
作者: Kim, A-Yeong Song, Hyun-Je Park, Seong-Bae Lee, Sang-Jo Kyungpook Natl Univ Sch Comp Sci & Engn Daegu 41566 South Korea
Re-ranking models of parse trees have been focused on re-ordering parse trees with a syntactic view. However, also a semantic view should be considered in re-ranking parse trees, because the fact that a word pair has ... 详细信息
来源: 评论
Untargeted Adversarial Attack on knowledge graph embeddings  47
Untargeted Adversarial Attack on Knowledge Graph Embeddings
收藏 引用
47th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Zhao, Tianzhe Chen, Jiaoyan Ru, Yanchi Lin, Qika Geng, Yuxia Liu, Jun Xi An Jiao Tong Univ Sch Comp Sci & Technol Xian Peoples R China Univ Manchester Dept Comp Sci Manchester Lancs England Natl Univ Singapore Singapore Singapore Hangzhou Dianzi Univ Sch Comp Sci Hangzhou Peoples R China Xi An Jiao Tong Univ Natl Engn Lab Big Data Analyt Xian Peoples R China
knowledge graph embedding (KGE) methods have achieved great success in handling various knowledge graph (KG) downstream tasks. However, KGE methods may learn biased representations on low-quality KGs that are prevalen... 详细信息
来源: 评论
In Silico Drug Repurposing using knowledge graph embeddings for Alzheimer's Disease  9
In Silico Drug Repurposing using Knowledge Graph Embeddings ...
收藏 引用
9th International Conference on Bioinformatics Research and Applications (ICBRA)
作者: Daluwatumulle, Geesa Wijesinghe, Rupika Weerasinghe, Ruvan Univ Colombo Sch Comp Colombo Sri Lanka
Drug repurposing (DR), also known as drug repositioning, is a method that identifies novel therapeutic uses from existing drugs. This strategy is highly effective, saves time, cost, and has a minimum risk factor when ... 详细信息
来源: 评论
New Strategies for Learning knowledge graph embeddings: The Recommendation Case  23rd
New Strategies for Learning Knowledge Graph Embeddings: The ...
收藏 引用
23rd International Conference on knowledge Engineering and knowledge Management (EKAW)
作者: Hubert, Nicolas Monnin, Pierre Brun, Armelle Monticolo, Davy Univ Lorraine LORIA CNRS Nancy France Univ Lorraine ERPI Nancy France Orange Belfort France
knowledge graph embedding models encode elements of a graph into a low-dimensional space that supports several downstream tasks. This work is concerned with the recommendation task, which we approach as a link predict... 详细信息
来源: 评论
ResConvE: Deeper Convolution-Based knowledge graph embeddings  16th
ResConvE: Deeper Convolution-Based Knowledge Graph Embedding...
收藏 引用
16th CCF Conference on Computer Supported Cooperative Work and Social Computing (ChineseCSCW)
作者: Long, Yongxu Qiu, Zihan Zheng, Dongyang Wu, Zhengyang Li, Jianguo Tang, Yong South China Normal Univ Sch Comp Sci Guangzhou 510631 Guangdong Peoples R China
Link prediction on knowledge graphs (KGs) is an effective way to address their incompleteness. ConvE and InteractE have introduced CNN to this task and achieved excellent performance, but their model uses only a singl... 详细信息
来源: 评论
STDE: A Single-Senior-Teacher knowledge Distillation Model for High-Dimensional knowledge graph embeddings  2
STDE: A Single-Senior-Teacher Knowledge Distillation Model f...
收藏 引用
2nd IEEE International Conference on Information Communication and Software Engineering (ICICSE) / 7th International Conference on Mathematics and Artificial Intelligence (ICMAI)
作者: Guo, Xiaobo Wang, Peipei Gao, Neng Wang, Xin Feng, Wenying Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Coordinat Ctr China Natl Comp Network Emergency Response Tech Team Beijing Peoples R China
An important role of knowledge graph embedding (KGE) is to automatically complete the missing fact in a knowledge base. It is well-known that human society is constantly developing and the knowledge generated by human... 详细信息
来源: 评论
RETRA: Recurrent Transformers for Learning Temporally Contextualized knowledge graph embeddings  18th
RETRA: Recurrent Transformers for Learning Temporally Contex...
收藏 引用
18th Extended Semantic Web Conference (ESWC)
作者: Werner, Simon Rettinger, Achim Halilaj, Lavdim Luttin, Jurgen Trier Univ Trier Germany Bosch Res Renningen Germany
knowledge graph embeddings (KGE) are vector representations that capture the global distributional semantics of each entity instance and relation type in a static knowledge graph (KG). While KGEs have the capability t... 详细信息
来源: 评论
Integrating knowledge graph embeddings and Pre-trained Language Models in Hypercomplex Spaces  22nd
Integrating Knowledge Graph Embeddings and Pre-trained Langu...
收藏 引用
22nd International Semantic Web Conference (ISWC)
作者: Nayyeri, Mojtaba Wang, Zihao Akter, Mst. Mahfuja Alam, Mirza Mohtashim Rony, Md Rashad Al Hasan Lehmann, Jens Staab, Steffen Univ Stuttgart Stuttgart Germany Univ Bonn Bonn Germany Karlsruhe Inst Technol Karlsruhe Germany Tech Univ Dresden Amazon Dresden Germany Univ Southampton Southampton England
knowledge graphs comprise structural and textual information to represent knowledge. To predict new structural knowledge, current approaches learn representations using both types of information through knowledge grap... 详细信息
来源: 评论
Fantastic knowledge graph embeddings and How to Find the Right Space for Them  19th
Fantastic Knowledge Graph Embeddings and How to Find the Rig...
收藏 引用
19th International Semantic Web Conference (ISWC)
作者: Nayyeri, Mojtaba Xu, Chengjin Vahdati, Sahar Vassilyeva, Nadezhda Sallinger, Emanuel Yazdi, Hamed Shariat Lehmann, Jens Univ Bonn Smart Data Analyt Grp SDA Bonn Germany InfAI Dresden Lab Dresden Germany Univ Oxford Oxford England TU Wien Vienna Austria Fraunhofer IAIS Dresden Lab Dresden Germany
During the last few years, several knowledge graph embedding models have been devised in order to handle machine learning problems for knowledge graphs. Some of the models which were proven to be capable of inferring ... 详细信息
来源: 评论