咨询与建议

限定检索结果

文献类型

  • 308 篇 期刊文献
  • 260 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 534 篇 工学
    • 511 篇 计算机科学与技术...
    • 104 篇 电气工程
    • 64 篇 软件工程
    • 38 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 17 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 25 篇 医学
    • 15 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 1 篇 教育学

主题

  • 569 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 64 篇 knowledge graph ...
  • 35 篇 representation l...
  • 30 篇 knowledge graphs
  • 25 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 13 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 computational mo...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 graph convolutio...
  • 10 篇 knowledge engine...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 li guanyu
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 563 篇 英文
  • 6 篇 其他
检索条件"主题词=Knowledge Graph embedding"
569 条 记 录,以下是301-310 订阅
排序:
RETRA: Recurrent Transformers for Learning Temporally Contextualized knowledge graph embeddings  18th
RETRA: Recurrent Transformers for Learning Temporally Contex...
收藏 引用
18th Extended Semantic Web Conference (ESWC)
作者: Werner, Simon Rettinger, Achim Halilaj, Lavdim Luttin, Jurgen Trier Univ Trier Germany Bosch Res Renningen Germany
knowledge graph embeddings (KGE) are vector representations that capture the global distributional semantics of each entity instance and relation type in a static knowledge graph (KG). While KGEs have the capability t... 详细信息
来源: 评论
Integrating knowledge graph embeddings and Pre-trained Language Models in Hypercomplex Spaces  22nd
Integrating Knowledge Graph Embeddings and Pre-trained Langu...
收藏 引用
22nd International Semantic Web Conference (ISWC)
作者: Nayyeri, Mojtaba Wang, Zihao Akter, Mst. Mahfuja Alam, Mirza Mohtashim Rony, Md Rashad Al Hasan Lehmann, Jens Staab, Steffen Univ Stuttgart Stuttgart Germany Univ Bonn Bonn Germany Karlsruhe Inst Technol Karlsruhe Germany Tech Univ Dresden Amazon Dresden Germany Univ Southampton Southampton England
knowledge graphs comprise structural and textual information to represent knowledge. To predict new structural knowledge, current approaches learn representations using both types of information through knowledge grap... 详细信息
来源: 评论
Fantastic knowledge graph embeddings and How to Find the Right Space for Them  19th
Fantastic Knowledge Graph Embeddings and How to Find the Rig...
收藏 引用
19th International Semantic Web Conference (ISWC)
作者: Nayyeri, Mojtaba Xu, Chengjin Vahdati, Sahar Vassilyeva, Nadezhda Sallinger, Emanuel Yazdi, Hamed Shariat Lehmann, Jens Univ Bonn Smart Data Analyt Grp SDA Bonn Germany InfAI Dresden Lab Dresden Germany Univ Oxford Oxford England TU Wien Vienna Austria Fraunhofer IAIS Dresden Lab Dresden Germany
During the last few years, several knowledge graph embedding models have been devised in order to handle machine learning problems for knowledge graphs. Some of the models which were proven to be capable of inferring ... 详细信息
来源: 评论
Leveraging knowledge graph embeddings for Natural Language Question Answering  24th
Leveraging Knowledge Graph Embeddings for Natural Language Q...
收藏 引用
24th International Conference on Database Systems for Advanced Applications (DASFAA)
作者: Wang, Ruijie Wang, Meng Liu, Jun Chen, Weitong Cochez, Michael Decker, Stefan Xi An Jiao Tong Univ Natl Engn Lab Big Data Analyt Xian Shaanxi Peoples R China Xi An Jiao Tong Univ Sch Elect & Informat Engn Xian Shaanxi Peoples R China Southeast Univ Sch Comp Sci & Engn Nanjing Jiangsu Peoples R China Univ Queensland Sch Informat Technol & Elect Engn Brisbane Qld Australia Fraunhofer FIT D-53754 St Augustin Germany Rhein Westfal TH Aachen Informat 5 Aachen Germany Univ Jyvaskyla Fac Informat Technol Jyvaskyla Finland
A promising pathway for natural language question answering over knowledge graphs (KG-QA) is to translate natural language questions into graph-structured queries. During the translation, a vital process is to map ent... 详细信息
来源: 评论
Biomedical knowledge graph embeddings for Personalized Medicine  1
收藏 引用
20th EPIA Conference on Artificial Intelligence (EPIA)
作者: Vilela, Joana Asif, Muhammad Marques, Ana Rita Santos, Joao Xavier Rasga, Celia Vicente, Astrid Martiniano, Hugo Inst Nacl Saude Doutor Ricardo Jorge Lisbon Portugal BioISI Biosyst & Integrat Sci Inst Lisbon Portugal
Personalized medicine promises to revolutionize healthcare in the coming years. However significant challenges remain, namely in regard to integrating the vast amount of biomedical knowledge generated in the last few ... 详细信息
来源: 评论
Multimodal knowledge graph embeddings via Lorentz-based Contrastive Learning
Multimodal Knowledge Graph Embeddings via Lorentz-based Cont...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Liu, Ruizhou Cao, Zongsheng Wu, Zhe Xu, Qianqian Huang, Qingming Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing Peoples R China Pengcheng Lab Dept Networked Intelligence Shenzhen Peoples R China Chinese Acad Sci Key Lab Intelligent Informat Proc Inst Comp Technol Beijing Peoples R China Chinese Acad Sci Inst Informat Engn Beijing Peoples R China
Multimodal knowledge graph embeddings (MKGE) have recently garnered significant attention. Unlike traditional unimodal knowledge graph embeddings, MKGE integrates both structural and multimodal knowledge to represent ... 详细信息
来源: 评论
An Evaluation of Hubness Reduction Methods for Entity Alignment with knowledge graph embeddings  13
An Evaluation of Hubness Reduction Methods for Entity Alignm...
收藏 引用
13th International Joint Conference on knowledge Discovery, knowledge Engineering and knowledge Management (IC3K) / 13th International Conference on knowledge Engineering and Ontology Development (KEOD)
作者: Obraczka, Daniel Rahm, Erhard Univ Leipzig ScaDSAI Database Grp Leipzig Germany
The heterogeneity of knowledge graphs is problematic for conventional data integration frameworks. A possible solution to this issue is using knowledge graph embeddings (KGEs) to encode entities into a lower-dimension... 详细信息
来源: 评论
Towards Understanding the Impact of graph Structure on knowledge graph embeddings  18th
Towards Understanding the Impact of Graph Structure on Knowl...
收藏 引用
18th International Conference on Neural-Symbolic Learning and Reasoning (NeSy)
作者: Dave, Brandon Christou, Antrea Shimizu, Cogan Wright State Univ Dayton OH 45435 USA
knowledge graphs (KGs) are an established paradigm for integrating heterogeneous data and representing knowledge. As such, there are many different methodologies for producing KGs, which span notions of expressivity, ... 详细信息
来源: 评论
Swift and Sure: Hardness-aware Contrastive Learning for Low-dimensional knowledge graph embeddings  22
Swift and Sure: Hardness-aware Contrastive Learning for Low-...
收藏 引用
31st ACM Web Conference (WWW)
作者: Wang, Kai Liu, Yu Sheng, Quan Z. Dalian Univ Technol Sch Software Key Lab Ubiquitous Network & Serv Software Liaoni Dalian Liaoning Peoples R China Macquarie Univ Sch Comp Intelligent Comp Lab Sydney NSW Australia
knowledge graph embedding (KGE) has shown great potential in automatic knowledge graph (KG) completion and knowledge-driven tasks. However, recent KGE models suffer from high training cost and large storage space, thu... 详细信息
来源: 评论
Machine learning estimated probability of relapse in early-stage non-small-cell lung cancer patients with aneuploidy imputation scores and knowledge graph embeddings
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 235卷
作者: Buosi, Samuele Timilsina, Mohan Janik, Adrianna Costabello, Luca Torrente, Maria Provencio, Mariano Fey, Dirk Novacek, Vit Univ Galway Data Sci Inst Univ Rd Galway H91 TK33 Co Galway Ireland Masaryk Univ Fac Informat Botanicka 68a Brno 60200 Czech Republic Masaryk Mem Canc Inst Zluty Kopec 7 Brno 65653 Czech Republic Accenture Labs Grand Canal Dock D02 YN32 Co Dublin Ireland Hosp Univ Puerta de Hierro Majadahonda Med Oncol Dept C Joaquin Rodrigo 1 Majadahonda 28222 Madrid Spain Univ Coll Dublin Syst Biol Ireland Dublin Co Dublin Ireland
Motivation: Low-stage lung cancer is known to recur unpredictably, and patients receiving various treatment methods like radiation, chemotherapy, and immunotherapies have been seen to respond very differently. Identif... 详细信息
来源: 评论